PyTorch 的数据增强

我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包。有 3 个主要的模块:

  • torchvision.transforms: 里面包括常用的图像预处理方法
  • torchvision.datasets: 里面包括常用数据集如 mnist、CIFAR-10、Image-Net 等
  • torchvision.models: 里面包括常用的预训练好的模型,如 AlexNet、VGG、ResNet、GoogleNet 等

深度学习模型是由数据驱动的,数据的数量和分布对模型训练的结果起到决定性作用。所以我们需要对数据进行预处理和数据增强。下面是用数据增强,从一张图片经过各种变换生成 64 张图片,增加了数据的多样性,这可以提高模型的泛化能力。

常用的图像预处理方法有:

  • 数据中心化
  • 数据标准化
  • 缩放
  • 裁剪
  • 旋转
  • 翻转
  • 填充
  • 噪声添加
  • 灰度变换
  • 线性变换
  • 仿射变换
  • 亮度、饱和度以及对比度变换。

人民币图片二分类实验中,我们对数据进行了一定的增强。

# 设置训练集的数据增强和转化
train_transform = transforms.Compose([
transforms.Resize((32, 32)),# 缩放
transforms.RandomCrop(32, padding=4), #裁剪
transforms.ToTensor(), # 转为张量,同时归一化
transforms.Normalize(norm_mean, norm_std),# 标准化
]) # 设置验证集的数据增强和转化,不需要 RandomCrop
valid_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])

当我们需要多个transforms操作时,需要作为一个list放在transforms.Compose中。需要注意的是transforms.ToTensor()是把图片转换为张量,同时进行归一化操作,把每个通道 0~255 的值归一化为 0~1。在验证集的数据增强中,不再需要transforms.RandomCrop()操作。然后把这两个transform操作作为参数传给Dataset,在Dataset__getitem__()方法中做图像增强。

def __getitem__(self, index):
# 通过 index 读取样本
path_img, label = self.data_info[index]
# 注意这里需要 convert('RGB')
img = Image.open(path_img).convert('RGB') # 0~255
if self.transform is not None:
img = self.transform(img) # 在这里做transform,转为tensor等等
# 返回是样本和标签
return img, label

其中self.transform(img)会调用Compose__call__()函数:

def __call__(self, img):
for t in self.transforms:
img = t(img)
return img

可以看到,这里是遍历transforms中的函数,按顺序应用到 img 中。

transforms.Normalize

torchvision.transforms.Normalize(mean, std, inplace=False)

功能:逐 channel 地对图像进行标准化

output = ( input - mean ) / std

  • mean: 各通道的均值
  • std: 各通道的标准差
  • inplace: 是否原地操作

该方法调用的是F.normalize(tensor, self.mean, self.std, self.inplace)

而``F.normalize()`方法如下:

def normalize(tensor, mean, std, inplace=False):
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.') if not inplace:
tensor = tensor.clone() dtype = tensor.dtype
mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
tensor.sub_(mean[:, None, None]).div_(std[:, None, None])
return tensor

首先判断是否为 tensor,如果不是 tensor 则抛出异常。然后根据inplace是否为 true 进行 clone,接着把 mean 和 std 都转换为 tensor (原本是 list),最后减去均值除以方差:tensor.sub_(mean[:, None, None]).div_(std[:, None, None])

对数据进行均值为 0,标准差为 1 的标准化,可以加快模型的收敛。

逻辑回归的实验中,我们的数据生成代码如下:

sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
# 使用正态分布随机生成样本,均值为张量,方差为标量
x0 = torch.normal(mean_value * n_data, 1) + bias # 类别0 数据 shape=(100, 2)
# 生成对应标签
y0 = torch.zeros(sample_nums) # 类别0 标签 shape=(100, 1)
# 使用正态分布随机生成样本,均值为张量,方差为标量
x1 = torch.normal(-mean_value * n_data, 1) + bias # 类别1 数据 shape=(100, 2)
# 生成对应标签
y1 = torch.ones(sample_nums) # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)

生成的数据均值是mean_value+bias=1.7+1=2.7,比较靠近 0 均值。模型在 380 次迭代时,准确率就超过了 99.5%。

如果我们把 bias 修改为 5。那么数据的均值变成了 6.7,偏离 0 均值较远,这时模型训练需要更多次才能收敛 (准确率达到 99.5%)。

**参考资料**

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

[PyTorch 学习笔记] 2.2 图片预处理 transforms 模块机制的更多相关文章

  1. [PyTorch 学习笔记] 1.4 计算图与动态图机制

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py 计算图 深 ...

  2. SQL反模式学习笔记12 存储图片或其他多媒体大文件

    目标:存储图片或其他多媒体大文件 反模式:图片存储在数据库外的文件系统中,数据库表中存储文件的对应的路径和名称. 缺点:     1.文件不支持Delete操作.使用SQL语句删除一条记录时,对应的文 ...

  3. Node.js学习笔记(2):基本模块

    Node.js学习笔记(2):基本模块 模块 引入模块 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式.在No ...

  4. Apollo学习笔记(一):canbus模块与车辆底盘之间的CAN数据传输过程

    Apollo学习笔记(一):canbus模块与车辆底盘之间的CAN数据传输过程 博主现在从车载自组网信道分配和多跳路由转向了自动驾驶,没啥经验,想快些做出来个Demo还是得站在巨人的肩膀上才行,我选择 ...

  5. [Firefly引擎][学习笔记三][已完结]所需模块封装

    原地址:http://www.9miao.com/question-15-54671.html 学习笔记一传送门学习笔记二传送门 学习笔记三导读:        笔记三主要就是各个模块的封装了,这里贴 ...

  6. Python学习笔记(十四):模块高级

    以Mark Lutz著的<Python学习手册>为教程,每天花1个小时左右时间学习,争取两周完成. --- 写在前面的话 2013-7-23 21:30 学习笔记 1,包导入是把计算机上的 ...

  7. python 学习笔记 13 -- 经常使用的时间模块之time

    Python 没有包括相应日期和时间的内置类型.只是提供了3个相应的模块,能够採用多种表示管理日期和时间值: *    time 模块由底层C库提供与时间相关的函数.它包括一些函数用于获取时钟时间和处 ...

  8. 【pytorch】pytorch学习笔记(一)

    原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...

  9. Pytorch学习笔记(一)——简介

    一.Tensor Tensor是Pytorch中重要的数据结构,可以认为是一个高维数组.Tensor可以是一个标量.一维数组(向量).二维数组(矩阵)或者高维数组等.Tensor和numpy的ndar ...

随机推荐

  1. PHP zip_close() 函数

    定义和用法 The zip_close() 函数关闭由 zip_open() 函数打开的 zip 档案.高佣联盟 www.cgewang.com 语法 zip_close(zip) 参数 描述 zip ...

  2. 集合框架-HashMap&HashSet&LinkedHshMap

    一.HashMap的底层实现 HashMap底层是基于数组和链表实现的.其中最重要的参数:容量和负载因子. 容量的默认大小事16,负载因子是0.75,当HashMap的size>16*0.75的 ...

  3. python 创建字典以及操作字典----这是基础知识

    当你编程久了,发现所有的东西都是建立在基础之上的,庞大的代码 你要识别出它的类型是什么 或者返回后类型是什么!? 根据返回的类型 或者需要操作的对象是什么类型  就可以选择相应的方法进行处理 #创建字 ...

  4. 关于json 是字符串还是对象的问题

    是用ajax提交的时候,json应该是字符串形式: 响应的内容,根据设置处理不同,可能是对象形式:也可能是字符串形式. 如果是字符串形式,可转化成对象形式 再进行处理. 以下常用的几个转换函数:看名字 ...

  5. day22:面向对象封装对象操作&类操作&面向对象删除操作

    面向对象程序开发 1.类的三种定义方式 class MyClass: pass class MyClass(): #(推荐) pass class MyClass(object): # object类 ...

  6. 用 Python 下载抖音无水印视频

    说起抖音,大家或多或少应该都接触过,如果大家在上面下载过视频,一定知道我们下载的视频是带有水印的,那么我们有什么方式下载不带水印的视频呢?其实用 Python 就可以做到,下面我们来看一下. 很多人学 ...

  7. Go语言入门系列(四)之map的使用

    本系列前面的文章: Go语言入门系列(一)之Go的安装和使用 Go语言入门系列(二)之基础语法总结 Go语言入门系列(三)之数组和切片 1. 声明 map是一种映射,可以将键(key)映射到值(val ...

  8. List集合遍历时修改元素出现并发修改异常总结

    什么是并发修改异常: 当我们在遍历实现了collection接口与iterator接口的集合时(List.Set.Map), 我们可以通过遍历索引也可以通过迭代器进行遍历.在我们使用迭代器进行遍历集合 ...

  9. Kubernetes基于haproxy实现ingress服务暴露

    HAproxy Ingress控制器 HAproxy Ingress简介 HAProxy Ingress watches in the k8s cluster and how it builds HA ...

  10. css中关于:nth-child()和:nth-of-type()的深入理解

    css中关于:nth-child()和:nth-of-type()的深入理解 在css中有这样一类属性,是以:nth-开头的,其中最常见的就是:nth-child() 和 :nth-of-type() ...