差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析、T检验和卡方检验。

三个方法的区别

  • 其实核心的区别在于:数据类型不一样。如果是定类和定类,此时应该使用卡方分析;如果是定类和定量,此时应该使用方差或者T检验。
  • 方差和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。

进一步细分

三种方法的具体分类汇总

1)方差分析

根据X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。

单因素方差分析,用于分析定类数据与定量数据之间的关系情况。在使用单因素方差分析时,需要每个选项的样本量大于30,比如男性和女性样本量分别是100和120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于20岁的样本量仅为20个,那么需要将小于20岁的选项与另外一组(比如20~25岁)的组别合并为一组,然后再进行单因素方差分析。

如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。​​​

SPSSAU-方差分析

双因素方差分析,用于分析定类数据(2个)与定量数据之间的关系情况,例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性。

SPSSAU-双因素方差分析

多因素方差分析通常用于类实验式问卷研究。比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,以及男女分别再细分使用新药和普通药物;同时高血压患者对于新药可能有干扰,因而研究者将被试是否患高血压也纳入考虑范畴中。因而最终,X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。因而需要进行三因素方差分析即多因素方差分析。

SPSSAU-多因素方差分析

在方法选择上,问卷研究通常会使用方差分析,但某些专业,比如心理学、教育学或者师范类专业等涉及到实验研究时,更多会使用T检验进行分析,另外方差分析与T检验还有较多差异,在某些分析中只能使用其中一种。

2)T检验

T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。

独立样本T检验和单因素方差分析功能上基本一致,但是独立样本T检验只能比较两组选项的差异,比如男性和女性。相对来讲,独立样本T检验在实验比较时使用频率更高,尤其是生物、医学相关领域。针对问卷研究,如果比较的类别为两组,独立样本T检验和单因素方差分析均可实现,研究者自行选择使用即可。

SPSSAU-t检验分析

独立样本T检验和配对样本T检验功能上都是比较差异,而且均是比较两个组别差异。但二者有着实质性区别,如果是比较不同性别,婚姻状况(已婚和未婚)样本对某变量的差异时,应该使用独立样本T检验。如果比较组别之间有配对关系时,只能使用配对样本T检验,配对关系是指类似实验组和对照组的这类关系。另外独立样本T检验两组样本个数可以不相等,而配对样本T检验的两组样本量需要完全相等。

SPSSAU-配对t检验分析

T检验的第三种分析方法为单样本T检验。比如问卷某题项选项表示为1分代表非常不满意,2分代表比较不满意,3分代表一般,4分代表比较满意,5分代表非常满意,当想分析样本对此题项的态度是否有明显的倾向,比如明显高于3分或者明显低于3分时,即可以使用单样本T检验。单样本T检验是比较某个题项的平均得分是否与某数字(例子是与3进行对比)有着明显的差异,如果呈现出显著性差异,即说明明显该题项平均打分明显不等于3分。此分析方法在问卷研究中较少使用,平均得分是否明显不为3分可以很直观的看出,而不需要单独进行检验分析。

SPSSAU-单样本t检验分析

3)卡方分析

卡方检验用于分析定类数据与定类数据之间的关系情况。例如研究人员想知道两组学生对于手机品牌的偏好差异情况,则应该使用卡方分析。卡方是通过分析不同类别数据的相对选择频数和占比情况,进而进行差异判断,单选题或多选题均可以使用卡方分析进行对比差异分析。

SPSSAU-卡方分析

方差分析、T检验、卡方分析如何区分?的更多相关文章

  1. R-5 相关分析-卡方分析

    本节内容: 1:相关分析 2:卡方分析 一.相关分析 相关系数: 皮尔逊相关系数:一般用来计算两个连续型变量的相关系数. 肯德尔相关系数:一个连续一个分类(最好是定序变量) 斯皮尔曼相关系数:2个变量 ...

  2. 卡方分布、卡方独立性检验和拟合性检验理论及其python实现

    如果你在寻找卡方分布是什么?如何实现卡方检验?那么请看这篇博客,将以通俗易懂的语言,全面的阐述卡方.卡方检验及其python实现. 1. 卡方分布 1.1 简介 抽样分布有三大应用:T分布.卡方分布和 ...

  3. t分布, 卡方x分布,F分布

    T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://c ...

  4. 基于Python的信用评分卡模型分析(二)

    上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...

  5. (linux)MMC 卡驱动分析

    最近花时间研究了一下 MMC 卡驱动程序,开始在网上找了很多关于 MMC 卡驱动的分析文章,但大都是在描述各个层,这对于初学者来讲帮助并不大,所以我就打算把自己的理解写下来,希望对大家有用.个人觉得理 ...

  6. 数据分箱:等频分箱,等距分箱,卡方分箱,计算WOE、IV

    转载:https://zhuanlan.zhihu.com/p/38440477 转载:https://blog.csdn.net/starzhou/article/details/78930490 ...

  7. 图像检索:RGBHistogram+欧几里得距离|卡方距离

    RGBHistogram: 分别计算把彩色图像的三个通道R.G.B的一维直方图,然后把这三个通道的颜色直方图结合起来,就是颜色的描写叙述子RGBHistogram. 以下给出计算RGBHistogra ...

  8. Android 界面滑动卡顿分析与解决方案(入门)

    Android 界面滑动卡顿分析与解决方案(入门) 导致Android界面滑动卡顿主要有两个原因: 1.UI线程(main)有耗时操作 2.视图渲染时间过长,导致卡顿 目前只讲第1点,第二点相对比较复 ...

  9. Spark MLlib编程API入门系列之特征选择之卡方特征选择(ChiSqSelector)

    不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检 ...

随机推荐

  1. proj0的具体实现 #CS61B-sp18

    https://github.com/Centurybbx/sp18-century/tree/master/proj0 proj0的具体实现在上面的Github中. 在proj0中我明显感受到国外大 ...

  2. Kali小技巧

    说明:此方法适用于Debian.Ubuntu等带apt工具的操作系统. sudo apt-get autoremove --purge 软件名 # 命令&参数解释: # sudo--获取 ro ...

  3. Checkbutton基本写法

    1.Checkbutton(self 窗口对象,text 按钮显示内容,variable 绑定变量->一起变化, onvalue 用户点击时得到的值,offvalue 没有点击得到的值) sel ...

  4. 4.26 省选模拟赛 T3 状压dp 差分求答案

    LINK:T3 比较好的题目 考试的时候被毒瘤的T2给搞的心态爆炸 这道题连正解的思路都没有想到. 一看到题求删除点的最少个 可以使得不连通. 瞬间想到最小割 发现对于10分直接跑最小割即可. 不过想 ...

  5. CPU监控 线段树裸题

    LINK:bzoj3064 此题甚好码了20min停下来思考的时候才发现不对的地方有点坑... 还真不好写来着 可这的确是线段树的裸题...我觉得我写应该没有什么大问题 不过思路非常的紊乱 如果是自己 ...

  6. JavaScript动画实例:圆点的衍生

    考虑如下的曲线方程: R=S*sqrt(n) α=n*θ X=R*SIN(α) Y=R*COS(α) 其中,S和θ可指定某一个定值.对n循环取0~999共1000个值,对于每个n,按照给定的坐标方程, ...

  7. 如何在Ubuntu18.04里面添加中文输入法

    1. 安装语言包 System Settings–>Region&language->Manage installed languages–>Install/Remove L ...

  8. 笨办法学python3练习代码13-14:argv参数变量的学习

    ex13.py  argv参数的学习 #argv:参数变量(argument variable),这是一个标准的编程术语,在其他语言中也可可以看到.argument可译为: 参数 #如果参数是用户在执 ...

  9. 文字识别还能这样用?通过Python做文字识别到破解图片验证码

    前期准备 1. 安装包,直接在终端上输入pip指令即可: # 发送浏览器请求 pip3 install requests # 文字识别 pip3 install pytesseract # 图片处理 ...

  10. SpringBoot常用配置,引入外部配置文件信息,热加载

    SpringBoot的配置文件格式 yml规范 SpringBoot的配置文件支持properties和yml,甚至还支持json. 更推荐使用yml文件格式: yml文件,会根据换行和缩进帮助咱们管 ...