差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析、T检验和卡方检验。

三个方法的区别

  • 其实核心的区别在于:数据类型不一样。如果是定类和定类,此时应该使用卡方分析;如果是定类和定量,此时应该使用方差或者T检验。
  • 方差和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。

进一步细分

三种方法的具体分类汇总

1)方差分析

根据X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。

单因素方差分析,用于分析定类数据与定量数据之间的关系情况。在使用单因素方差分析时,需要每个选项的样本量大于30,比如男性和女性样本量分别是100和120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于20岁的样本量仅为20个,那么需要将小于20岁的选项与另外一组(比如20~25岁)的组别合并为一组,然后再进行单因素方差分析。

如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。​​​

SPSSAU-方差分析

双因素方差分析,用于分析定类数据(2个)与定量数据之间的关系情况,例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性。

SPSSAU-双因素方差分析

多因素方差分析通常用于类实验式问卷研究。比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,以及男女分别再细分使用新药和普通药物;同时高血压患者对于新药可能有干扰,因而研究者将被试是否患高血压也纳入考虑范畴中。因而最终,X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。因而需要进行三因素方差分析即多因素方差分析。

SPSSAU-多因素方差分析

在方法选择上,问卷研究通常会使用方差分析,但某些专业,比如心理学、教育学或者师范类专业等涉及到实验研究时,更多会使用T检验进行分析,另外方差分析与T检验还有较多差异,在某些分析中只能使用其中一种。

2)T检验

T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。

独立样本T检验和单因素方差分析功能上基本一致,但是独立样本T检验只能比较两组选项的差异,比如男性和女性。相对来讲,独立样本T检验在实验比较时使用频率更高,尤其是生物、医学相关领域。针对问卷研究,如果比较的类别为两组,独立样本T检验和单因素方差分析均可实现,研究者自行选择使用即可。

SPSSAU-t检验分析

独立样本T检验和配对样本T检验功能上都是比较差异,而且均是比较两个组别差异。但二者有着实质性区别,如果是比较不同性别,婚姻状况(已婚和未婚)样本对某变量的差异时,应该使用独立样本T检验。如果比较组别之间有配对关系时,只能使用配对样本T检验,配对关系是指类似实验组和对照组的这类关系。另外独立样本T检验两组样本个数可以不相等,而配对样本T检验的两组样本量需要完全相等。

SPSSAU-配对t检验分析

T检验的第三种分析方法为单样本T检验。比如问卷某题项选项表示为1分代表非常不满意,2分代表比较不满意,3分代表一般,4分代表比较满意,5分代表非常满意,当想分析样本对此题项的态度是否有明显的倾向,比如明显高于3分或者明显低于3分时,即可以使用单样本T检验。单样本T检验是比较某个题项的平均得分是否与某数字(例子是与3进行对比)有着明显的差异,如果呈现出显著性差异,即说明明显该题项平均打分明显不等于3分。此分析方法在问卷研究中较少使用,平均得分是否明显不为3分可以很直观的看出,而不需要单独进行检验分析。

SPSSAU-单样本t检验分析

3)卡方分析

卡方检验用于分析定类数据与定类数据之间的关系情况。例如研究人员想知道两组学生对于手机品牌的偏好差异情况,则应该使用卡方分析。卡方是通过分析不同类别数据的相对选择频数和占比情况,进而进行差异判断,单选题或多选题均可以使用卡方分析进行对比差异分析。

SPSSAU-卡方分析

方差分析、T检验、卡方分析如何区分?的更多相关文章

  1. R-5 相关分析-卡方分析

    本节内容: 1:相关分析 2:卡方分析 一.相关分析 相关系数: 皮尔逊相关系数:一般用来计算两个连续型变量的相关系数. 肯德尔相关系数:一个连续一个分类(最好是定序变量) 斯皮尔曼相关系数:2个变量 ...

  2. 卡方分布、卡方独立性检验和拟合性检验理论及其python实现

    如果你在寻找卡方分布是什么?如何实现卡方检验?那么请看这篇博客,将以通俗易懂的语言,全面的阐述卡方.卡方检验及其python实现. 1. 卡方分布 1.1 简介 抽样分布有三大应用:T分布.卡方分布和 ...

  3. t分布, 卡方x分布,F分布

    T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://c ...

  4. 基于Python的信用评分卡模型分析(二)

    上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...

  5. (linux)MMC 卡驱动分析

    最近花时间研究了一下 MMC 卡驱动程序,开始在网上找了很多关于 MMC 卡驱动的分析文章,但大都是在描述各个层,这对于初学者来讲帮助并不大,所以我就打算把自己的理解写下来,希望对大家有用.个人觉得理 ...

  6. 数据分箱:等频分箱,等距分箱,卡方分箱,计算WOE、IV

    转载:https://zhuanlan.zhihu.com/p/38440477 转载:https://blog.csdn.net/starzhou/article/details/78930490 ...

  7. 图像检索:RGBHistogram+欧几里得距离|卡方距离

    RGBHistogram: 分别计算把彩色图像的三个通道R.G.B的一维直方图,然后把这三个通道的颜色直方图结合起来,就是颜色的描写叙述子RGBHistogram. 以下给出计算RGBHistogra ...

  8. Android 界面滑动卡顿分析与解决方案(入门)

    Android 界面滑动卡顿分析与解决方案(入门) 导致Android界面滑动卡顿主要有两个原因: 1.UI线程(main)有耗时操作 2.视图渲染时间过长,导致卡顿 目前只讲第1点,第二点相对比较复 ...

  9. Spark MLlib编程API入门系列之特征选择之卡方特征选择(ChiSqSelector)

    不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检 ...

随机推荐

  1. PHP array_pad() 函数

    实例 返回 5 个元素,并将 "blue" 值插入到数组的新元素中: <?php$a=array("red","green");pri ...

  2. Python os.chroot() 方法

    概述 os.chroot() 方法用于更改当前进程的根目录为指定的目录,使用该函数需要管理员权限.高佣联盟 www.cgewang.com 语法 chroot()方法语法格式如下: os.chroot ...

  3. Python 字典(Dictionary) str()方法

    Python 字典(Dictionary) str()方法 描述 Python 字典(Dictionary) str() 函数将值转化为适于人阅读的形式,以可打印的字符串表示.高佣联盟 www.cge ...

  4. PHP isset() 函数

    isset() 函数用于检测变量是否已设置并且非 NULL.高佣联盟 www.cgewang.com 如果已经使用 unset() 释放了一个变量之后,再通过 isset() 判断将返回 FALSE. ...

  5. PHP getDocNamespaces() 函数

    实例 返回 XML 文档的根节点中声明的命名空间: <?php$xml=<<<XML高佣联盟 www.cgewang.com<?xml version="1.0 ...

  6. JWT到底是个什么鬼?

    前面一篇我们了解了微服务安全认证架构是如何演进而来的,但是发现v2.5架构仍然较重,有没有轻量级一点的方法呢?其实业界早已有了实践,它就是基于JWT的安全认证架构.JWT到底是个什么鬼呢?本篇为你解答 ...

  7. luogu P1712 [NOI2016]区间 贪心 尺取法 线段树 二分

    LINK:区间 没想到尺取法. 先说暴力 可以发现答案一定可以转换到端点处 所以在每个端点从小到大扫描线段就能得到答案 复杂度\(n\cdot m\) 再说我的做法 想到了二分 可以进行二分答案 从左 ...

  8. 7.11 NOI模拟赛 qiqi20021026的T1 四个指针莫队 trie树

    LINK:qiqi20021026的T1 考场上只拿到了50分的\(nq\)暴力. 考虑一个区间和一个区间配对怎么做 二分图最大带权匹配复杂度太高. 先考虑LCS的问题 常见解决方法是后缀数组/tri ...

  9. zabbix配置自定义监控

    目录 zabbix配置自定义监控项---进程监控 1. 编写获取进程状态的脚本 2. 修改配置文件,添加自定义key 3. 配置监控项 4. 添加触发器 5. 媒介和动作 6. 触发并验证 zabbi ...

  10. Spring Cloud Data Flow初体验,以Local模式运行

    1 前言 欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章! Spring Cloud Data Flow是什么,虽然已经出现一段时间了,但想必很多人不知道,因为在项目中很少有人用.不仅 ...