题面

传送门:


Solution

这题的想法挺妙的。

.

首先,对于这种区间求答案的问题,我们一般都可以通过类似前缀和的思想一减来消去a,即求[a,b]的答案可以转化为求[1,b]-[1,a-1]

接下来我们可以先考虑一下每个物品数量不限制的做法。我们可以把这个问题类比为放球问题:我们要在n个相同的盒子里放x个球,这个问题可以用隔板法解决,显然答案为\(C_{x+n-1}^{n-1}\)

因为我们的n特别小,而且p为合数,所以可以用分解质因数的方法来算这个组合数。

.

接下来,我们可以考虑一下如何处理多计算的答案,考虑用容斥定理来解决这个问题。

不了解容斥定理的同志可以先看一下这篇文章

我们要求的是至少有一个物品不满足要求的方案总数,即求所有不满足要求的方案的并。

根据容斥定理,这个并的值为 \(\sum有一个物品不满足要求-有两个物品不满足要求+有三个物品不满足要求-...\)

所以说,我们只需要强制某些物品先选\(m_i+1\)个,再按照上面的放球问题的公式来计算就可以得出有若干个物品不满足要求的方案数。

答案即为总方案数-不满足要求的方案数的并

时间复杂度\(O(2^n*log_{max(a,b)})\)

这个问题就被我们切掉啦ヽ( ̄▽ ̄)ノ

.

如果有不清楚的地方可以看一下代码。


Code

//Luogu SP16607 IE1 - Sweets
//Jan,14th,2019
//容斥原理的应用
#include<iostream>
#include<cstdio>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int poi=2004;
const int N=15;
int prime[6]={-1,2,3,5,7};
long long C(long long x,long long y)//x为底,y为指
{
if(y>x) return 0;
int cnt[6]={0};
long long t_ans=1;
for(long long i=x-y+1;i<=x;i++)
{
long long t_num=i;
for(int j=1;j<=4;j++)
while(t_num%prime[j]==0)
{
t_num/=prime[j];
cnt[j]++;
}
t_ans=(t_ans*t_num)%poi;
}
for(long long i=1;i<=y;i++)
{
long long t_num=i;
for(int j=1;j<=4;j++)
while(t_num%prime[j]==0)
{
t_num/=prime[j];
cnt[j]--;
}
}
for(int i=1;i<=4;i++)
while(cnt[i]>0)
t_ans=(t_ans*prime[i])%poi,cnt[i]--;
return t_ans;
}
int m[N],n,a,b;
long long t_ans2,t_x;
bool used[N];
void dfs(int now)
{
if(now==n+1)
{
long long t_cnt=0,tot=0;
for(int i=1;i<=n;i++)
if(used[i]==true)
t_cnt+=m[i]+1,tot++;
if(t_cnt>t_x) return;
long long f=(tot%2==1?-1:1);
t_ans2+=f*C(t_x-t_cnt+n,n);
t_ans2=(t_ans2%poi+poi)%poi;
return;
}
for(int i=0;i<=1;i++)
used[now]=i,dfs(now+1);
}
long long Calc(long long x)
{
t_ans2=0,t_x=x;
dfs(1);
return t_ans2;
}
int main()
{
n=read(),a=read(),b=read();
for(int i=1;i<=n;i++)
m[i]=read(); printf("%lld",((Calc(b)-Calc(a-1))%poi+poi)%poi);
return 0;
}

SPOJ16607 IE1 - Sweets的更多相关文章

  1. WC2019 填坑记

    2019年1月8日 1.Luogu P2147 [SDOI2008]洞穴勘测 (LCT模板题&LCT学习) 2019年1月9日 2.LuoguP3203 [HNOI2010]弹飞绵羊  (LC ...

  2. 万圣节的糖果(Halloween Sweets)

    今天遇到codewars的一道题,这是链接,讲的是关于万圣节的一个题目,简单点说,就是9个包裹,一个天平,两次称的机会,怎么找出9个包裹中唯一一个较重的包裹. 像我这种年轻时候喜欢研究难题获得存在感的 ...

  3. BZOJ 3027 Sweets 生成函数,容斥

    Description John得到了n罐糖果.不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的).第i个糖果罐里有 mi个糖果.John决定吃掉一 ...

  4. 题解-CodeChef IOPC14L Sweets Problem

    Problem CodeChef-IOPC14L 题目概要:给定 \(n\) 种糖果且给定每种糖果的数量 \(A_i\),\(Q\) 组询问,每次问选出 \(S\) 个糖果的方案数(模\(10^9+7 ...

  5. cf1158A-The Party and Sweets - (贪心+思维)

    题意:有n个男孩,m个女孩,每个男孩给每个女孩一堆糖果.b数组表示每个男孩给出的最少糖果数,g数组表示每个女孩子收到的最大糖果数.求所有男孩给出的最小糖果总数. 解题: 先对b数组和g数组从小到大排序 ...

  6. The Party and Sweets CodeForces - 1159C (拓排)

    优化连边然后拓排. #include <iostream> #include <sstream> #include <algorithm> #include < ...

  7. Codeforces Round #600 (Div. 2) C - Sweets Eating

    #include<iostream> #include<algorithm> #include<cstring> using namespace std ; typ ...

  8. C - Sweets Eating

    规律题 前缀和+规律 先求前缀和...答案为c[i]=arr[i]+c[i-m]//i>m时. #include<bits/stdc++.h> using namespace std ...

  9. 【造轮子】打造一个简单的万能Excel读写工具

    大家工作或者平时是不是经常遇到要读写一些简单格式的Excel? shit!~很蛋疼,因为之前吹牛,就搞了个这东西,还算是挺实用,和大家分享下. 厌烦了每次搞简单类型的Excel读写?不怕~来,喜欢流式 ...

随机推荐

  1. Python-获取文件状态模块-os stat lastat fstat path

    案例: 在某项目中,需要获取文件状态,如: 文件的类型(普通文件.目录.符合连接.设备文件) 文件的访问权限 文件最后 访问.修改.节点状态 时间 普通文件大小 -- 如何解决? 方法1:通过os原始 ...

  2. 如何在服务器端使用ASP.NET Core 2 教程

    dhtmlxGantt用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表.可满足项目管理应用程序的所有需求,是最完善的甘特图图表库.它允许你创建动态甘特图,并以一个方便的图形化方式可视化项目进度. ...

  3. Docker系列——利用gogs搭建属于自己的git服务

    gogs简介 Gogs的目标是打造一个最简单.最快速和最轻松的方式搭建自助Git服务.使用Go语言开发使得Gogs能够通过独立的二进制分发,并且支持Go语言支持的所有平台,包括 Linux.Mac O ...

  4. linux 漏洞列表

    #CVE #Description #Kernels CVE-2017-1000367 [Sudo](Sudo 1.8.6p7 - 1.8.20) CVE-2017-7494 [Samba Remot ...

  5. Java (三)APACHE Commons IO 常规操作

    上一篇:Java (二)基于Eclipse配置Commons IO的环境 例1:查看文件.文件夹的长度(大小). 1 import java.io.File; 2 3 import org.apach ...

  6. 看动画学算法之:linkedList

    目录 简介 linkedList的构建 linkedList的操作 头部插入 尾部插入 中间插入 删除节点 简介 linkedList应该是一种非常非常简单的数据结构了.节点一个一个的连接起来,就成了 ...

  7. Java中的对象都是在堆上分配的吗?

    作者:LittleMagic https://www.jianshu.com/p/8377e09971b8 为了防止歧义,可以换个说法: Java对象实例和数组元素都是在堆上分配内存的吗? 答:不一定 ...

  8. TP5 调用快递鸟api 查询快递信息

    1,去快递鸟,下载sdk https://www.kdniao.com/api-track 下载PHPsdk 2,下载下来的事PHP文件,不是以类的形式显示的,所以为了方便,我把他封装成了类,不需要封 ...

  9. Mac 每次都要执行source ~/.bash_profile 后,配置的环境变量才生效

    问题: 自己在 ~/.bash_profile 中配置环境变量, 可是每次重启终端后配置的不生效.需要重新执行 : $source ~/.bash_profile后,才会生效. 原因: 自己是在bas ...

  10. Gradle的构建过程都不会?带你全面了解Android如何自定义Gradle 插件

    目前 Android 工程的默认构建工具为 Gradle,我们在构建 APK 的时候往往会执行 ./gradlew assembleDebug 这样的命令.. 那么这个命令到底代表着什么含义呢?命令的 ...