twoSum问题的核心思想
Two Sum 系列问题在 LeetCode 上有好几道,这篇文章就挑出有代表性的几道,介绍一下这种问题怎么解决。
TwoSum I
这个问题的最基本形式是这样:给你一个数组和一个整数 target,可以保证数组中存在两个数的和为 target,请你返回这两个数的索引。
比如输入 nums = [3,1,3,6], target = 6,算法应该返回数组 [0,2],因为 3 + 3 = 6。
这个问题如何解决呢?首先最简单粗暴的办法当然是穷举了:
int[] twoSum(int[] nums, int target) {
for (int i = 0; i < nums.length; i++)
for (int j = i + 1; j < nums.length; j++)
if (nums[j] == target - nums[i])
return new int[] { i, j };
// 不存在这么两个数
return new int[] {-1, -1};
}
这个解法非常直接,时间复杂度 O(N^2),空间复杂度 O(1)。
可以通过一个哈希表减少时间复杂度:
int[] twoSum(int[] nums, int target) {
int n = nums.length;
index<Integer, Integer> index = new HashMap<>();
// 构造一个哈希表:元素映射到相应的索引
for (int i = 0; i < n; i++)
index.put(nums[i], i);
for (int i = 0; i < n; i++) {
int other = target - nums[i];
// 如果 other 存在且不是 nums[i] 本身
if (index.containsKey(other) && index.get(other) != i)
return new int[] {i, index.get(other)};
}
return new int[] {-1, -1};
}
这样,由于哈希表的查询时间为 O(1),算法的时间复杂度降低到 O(N),但是需要 O(N) 的空间复杂度来存储哈希表。不过综合来看,是要比暴力解法高效的。
我觉得 Two Sum 系列问题就是想教我们如何使用哈希表处理问题。我们接着往后看。
TwoSum II
这里我们稍微修改一下上面的问题。我们设计一个类,拥有两个 API:
class TwoSum {
// 向数据结构中添加一个数 number
public void add(int number);
// 寻找当前数据结构中是否存在两个数的和为 value
public boolean find(int value);
}
如何实现这两个 API 呢,我们可以仿照上一道题目,使用一个哈希表辅助 find 方法:
class TwoSum {
Map<Integer, Integer> freq = new HashMap<>();
public void add(int number) {
// 记录 number 出现的次数
freq.put(number, freq.getOrDefault(number, 0) + 1);
}
public boolean find(int value) {
for (Integer key : freq.keySet()) {
int other = value - key;
// 情况一
if (other == key && freq.get(key) > 1)
return true;
// 情况二
if (other != key && freq.containsKey(other))
return true;
}
return false;
}
}
进行 find 的时候有两种情况,举个例子:
情况一:add 了 [3,3,2,5] 之后,执行 find(6),由于 3 出现了两次,3 + 3 = 6,所以返回 true。
情况二:add 了 [3,3,2,5] 之后,执行 find(7),那么 key 为 2,other 为 5 时算法可以返回 true。
除了上述两种情况外,find 只能返回 false 了。
对于这个解法的时间复杂度呢,add 方法是 O(1),find 方法是 O(N),空间复杂度为 O(N),和上一道题目比较类似。
但是对于 API 的设计,是需要考虑现实情况的。比如说,我们设计的这个类,使用 find 方法非常频繁,那么每次都要 O(N) 的时间,岂不是很浪费费时间吗?对于这种情况,我们是否可以做些优化呢?
是的,对于频繁使用 find 方法的场景,我们可以进行优化。我们可以参考上一道题目的暴力解法,借助哈希集合来针对性优化 find 方法:
class TwoSum {
Set<Integer> sum = new HashSet<>();
List<Integer> nums = new ArrayList<>();
public void add(int number) {
// 记录所有可能组成的和
for (int n : nums)
sum.add(n + number);
nums.add(number);
}
public boolean find(int value) {
return sum.contains(value);
}
}
这样 sum 中就储存了所有加入数字可能组成的和,每次 find 只要花费 O(1) 的时间在集合中判断一下是否存在就行了,显然非常适合频繁使用 find 的场景。
三、总结
对于 TwoSum 问题,一个难点就是给的数组无序。对于一个无序的数组,我们似乎什么技巧也没有,只能暴力穷举所有可能。
一般情况下,我们会首先把数组排序再考虑双指针技巧。TwoSum 启发我们,HashMap 或者 HashSet 也可以帮助我们处理无序数组相关的简单问题。
另外,设计的核心在于权衡,利用不同的数据结构,可以得到一些针对性的加强。
最后,如果 TwoSum I 中给的数组是有序的,应该如何编写算法呢?答案很简单,前文「双指针技巧汇总」写过:
int[] twoSum(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
return new int[]{left, right};
} else if (sum < target) {
left++; // 让 sum 大一点
} else if (sum > target) {
right--; // 让 sum 小一点
}
}
// 不存在这样两个数
return new int[]{-1, -1};
}
我最近精心制作了一份电子书《labuladong的算法小抄》,分为【动态规划】【数据结构】【算法思维】【高频面试】四个章节,共 60 多篇原创文章,绝对精品!限时开放下载,在我的公众号 labuladong 后台回复关键词【pdf】即可免费下载!

欢迎关注我的公众号 labuladong,技术公众号的清流,坚持原创,致力于把问题讲清楚!

twoSum问题的核心思想的更多相关文章
- 《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(叔篇)——TaskScheduler的启动
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- 《深入理解Spark:核心思想与源码分析》(前言及第1章)
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...
- 《深入理解Spark:核心思想与源码分析》(第2章)
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- 《深入理解Spark:核心思想与源码分析》一书正式出版上市
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...
- 《深入理解Spark:核心思想与源码分析》正式出版上市
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...
- Hibernate核心思想—ORM机制(一)
转:http://blog.csdn.net/wanghuan203/article/details/7566518 hibernate是一个采用ORM(Object/Relation Mapping ...
- hadoop的核心思想
hadoop的核心思想 1.1.1. hadoop的核心思想 Hadoop包括两大核心,分布式存储系统和分布式计算系统. 1.1.1.1. 分布式存储 为什么数据需要存储在分布式的系统中哪,难道单一的 ...
- 何谓IOC的核心思想
IOC(Inversion of Control)即控制反转,是在面试或平常交流中经常遇到了词汇:我也曾经仿照Spring,利用JDK的反射和动态代理实现了一个简单的IOC框架,感觉算是知其然也知其所 ...
- vue.js学习笔记(一):什么是mvvm框架,vue.js的核心思想
一:MVVM框架 MVVM框架的应用场景: 1.针对具有复杂交互逻辑的前端应用 2.提供基础的架构抽象 3.提供ajax数据持久化,保证前端用户体验 二:vue.js的核心思想 (一):数据驱动 ( ...
随机推荐
- python 报错 wxPyDeprecationWarning: Using deprecated class PySimpleApp.
如题:python 报错 提示为 : wxPyDeprecationWarning: Using deprecated class PySimpleApp. 解决:将 wx.PySimpleApp() ...
- 005 01 Android 零基础入门 01 Java基础语法 01 Java初识 05 Eclipse简介
005 01 Android 零基础入门 01 Java基础语法 01 Java初识 05 Eclipse简介 Eclipse是一款集成开发工具--IDE. 集成开发环境(IDE,Integrated ...
- C++vector and opencv Mat
转载:https://blog.csdn.net/u012507022/article/details/50979011?utm_source=blogxgwz5 最近在写Opencv程序,用到离散小 ...
- python文档下载
网址记录:https://docs.python.org/3.6/
- [C#.NET 拾遗补漏]09:数据标注与数据校验
数据标注(Data Annotation)是类或类成员添加上下文信息的一种方式,在 C# 通常用特性(Attribute)类来描述.它的用途主要可以分为下面这三类: 验证 Validation:向数据 ...
- 最全vue的vue-amap使用高德地图插件画多边形范围
一.在vue-cli的框架下的main.js(或者main.ts)中引入高德插件,代码如下: import Vue from 'vue' import VueAMap from 'vue-amap' ...
- 一个Java对象的内存布局
1.对象的创建过程 class loading class linking(verification,preparation,resolution) class initializing 申请对象内存 ...
- Vuejs上传
下载 Vuejs上传Vuejs上传 多部分上传Vue组件. 上传器可以选择上传多部分的文件. 这是关于最大的上传尺寸,允许你上传大文件. 如果prop multiple为真,文件列表将在选择文件时呈现 ...
- C# excel文件导入导出
欢迎关注微信公众号 C#编程大全 这里有更多入门级实例帮你快速成长 在C#交流群里,看到很多小伙伴在excel数据导入导出到C#界面上存在疑惑,所以今天专门做了这个主题,希望大家有所收获! 环境:wi ...
- GC调优-XX:PrintGCDetails深度解析
查看程序运行GC的运行情况 资源充足的GC情况 新生代 老年代 元空间 因为现在资源充足没有发生GC *案例:将JVM初始化内存与最大内存(防止内存抖动,反复GC)调至10m,new一个50m的数组对 ...