树的深度———树形DP
题目描述

输入

输出

样例
样例输入
样例输出
7
分析
这道题数据有1000000,把每一个顶点都枚举一次显然不现实,肯定会T掉
所以,我们还是从图中找规律
按照习惯,我们先把1号节点作为根节点模拟一下

我们可以很容易的通过一次dfs求出1号节点作为根节点时树的深度之和
1+2*3+3+4*2=18(当然,你把根节点的深度置为1也不会影响结果)
那么我们把根节点向下移到4好节点,我们可以发现什么呢
这时同把1作为根节点相比,1号节点的深度增加了1,但4所在的子树的节点的深度都减小了1
同样地,我们再把根节点下移到5,这时同把4作为根节点相比,1、4、3、2号节点的深度增加了1,但5所在的子树的节点的深度都减小了1
所以,我们设ans[i]为以i作为根节点时树的度数之和,siz[i]为以i为根子树的大小
那么ans[i]=ans[fa]+n-siz[i]-siz[i]=ans[fa]+n-2*siz[i]
siz数组我们可以预处理得到,ans[fa]我们也可以由ans[1]求得,所以,这道题就迎刃而解了
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=;
typedef long long ll;
struct asd{
ll from,to,next;
}b[maxn];
ll head[maxn],tot=,n;
void ad(ll aa,ll bb){
b[tot].from=aa;
b[tot].to=bb;
b[tot].next=head[aa];
head[aa]=tot++;
}
ll dep[maxn],ans[maxn],siz[maxn];
void dfs(ll now,ll fa){
dep[now]=dep[fa]+;
siz[now ]=;
ans[now]=dep[now];
for(ll i=head[now];i!=-;i=b[i].next){
ll u=b[i].to;
if(u==fa) continue;
dfs(u,now);
siz[now]+=siz[u];
ans[now]+=ans[u];
}
}
void dfs2(ll now,ll fa){
for(ll i=head[now];i!=-;i=b[i].next){
ll u=b[i].to;
if(u==fa) continue;
if(u!=){
ans[u]=ans[now]+(n-siz[u])-siz[u];
}
dfs2(u,now);
}
}
int main(){
memset(head,-,sizeof(head));
scanf("%lld",&n);
for(ll i=;i<n;i++){
ll aa,bb;
scanf("%lld%lld",&aa,&bb);
ad(aa,bb);
ad(bb,aa);
}
dep[]=-;//也可以置为0,都可以
dfs(,);
dfs2(,);
ll tot=-,jll=;
for(ll i=;i<=n;i++){
if(ans[i]>tot){
tot=ans[i];
jll=i;
}
}
printf("%lld\n",jll);
return ;
}
树的深度———树形DP的更多相关文章
- BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...
- [10.12模拟赛] 老大 (二分/树的直径/树形dp)
[10.12模拟赛] 老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图), ...
- 2014 Super Training #9 E Destroy --树的直径+树形DP
原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其 ...
- (中等) HDU 5293 Tree chain problem,树链剖分+树形DP。
Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There are ...
- bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]
4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ...
- 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...
- 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索
题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...
- POJ 1655 BalanceAct 3107 Godfather (树的重心)(树形DP)
参考网址:http://blog.csdn.net/acdreamers/article/details/16905653 树的重心的定义: 树的重心也叫树的质心.找到一个点,其所有的子树中最大的 ...
- Codeforces 633F 树的直径/树形DP
题意:有两个小孩玩游戏,每个小孩可以选择一个起始点,并且下一个选择的点必须和自己选择的上一个点相邻,问两个选的点权和的最大值是多少? 思路:首先这个问题可以转化为求树上两不相交路径的点权和的最大值,对 ...
随机推荐
- 【扯皮系列】一篇与众不同的 String、StringBuilder 和 StringBuffer 详解
碎碎念 这是一道老生常谈的问题了,字符串是不仅是 Java 中非常重要的一个对象,它在其他语言中也存在.比如 C++.Visual Basic.C# 等.字符串使用 String 来表示,字符串一旦被 ...
- 查询局域网指定段内存活IP
目录 批量ping 输出到指定文件 批量ping for /L %i IN (起始,扫描间距,结束) DO ping -w 2 -n 1 10.224.131.%i 如 for /L %i IN (5 ...
- protobuf安装流程
protobuf安装流程 环境 平台 Ubuntu16.04 依赖 autoconf automake libtool curl make g++ 安装流程 在Ubuntu / Debian上,您 ...
- while or if
多线程 wait && notifyAll 模式实现时,如果 锁中有判断,对共享对象有curd 操作时,有可能出现异常 即,判断 条件 这个时候关键字有 if 改为while 即可 ...
- MQ系列(0)——MQ简介
mq简介 mq 就是消息队列(Message Queue).想必大家对队列的数据结构已经很熟悉了,消息队列可以简单理解为:把要传输的数据放在队列中,mq 就是存放和发送消息的这么一个队列中间件.在消息 ...
- Spark GraphX从入门到实战
第1章 Spark GraphX 概述 1.1 什么是 Spark GraphX Spark GraphX 是一个分布式图处理框架,它是基于 Spark 平台提供对图计算和图挖掘简洁易用的而丰 ...
- ida 调试android之路
系统: Mac OSX 调试环境:IDA7.0, adb 手机环境:红米手机 android 4.4.4 前提条件: 红米手机root之路:https://www.cnblogs.com/dzqdz ...
- 寓教于乐!一款游戏让你成为 Vim 高手!
我们都知道,Vim 是 Linux 下一种非常重要的文本编辑器,我们可以用它来看代码.改代码,很多高手直接将 Vim 打造成一款强大的 IDE 用来写代码. 但是,对于新手而言,Vim 相对于其它编辑 ...
- SpringBoot -- 项目结构+启动流程
一.简述: 项目结构 二.简述:启动流程 说springboot的启动流程,当然少不了springboot启动入口类 @SpringBootApplication public class Sprin ...
- 基数排序(Java)
基数排序(Java) 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 基数排序(桶排序)介绍 基数排序(radix sort)属 ...