F. Make k Equal

题目链接

题意

长度为n的序列,每次可以选择一个最大的数字将其减一或者选择一个最小的数字将其加一,问最少操作多少次可以使得序列中至少存在 k 个一样的数字

分析

官方题解:http://codeforces.com/blog/entry/75246

可以想到最后一样的数字,一定是在原序列里面出现的,所以将原数组离散化之后,枚举最后一样的数字,并努力把它凑够 k 个。如何凑?借助左侧或者右侧的数字。只要借助了某侧的数字,那么这一侧全部的数字都要先挪动它旁边的那个位置,然后再按照需要搬到当前这个位置上来。

所以最后只会有两种方案:优先选左侧或者优先选右侧,我们都试一下就好了,结果取最小(计算细节可以参考代码以及官方题解)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 200000 + 5;
int n, k, a[N];
vector<int> v;
ll cnt[N], sum[N];
ll pre[N]; int main(){
scanf("%d%d", &n, &k);
for(int i=1;i<=n;i++){
scanf("%d", &a[i]);
v.push_back(a[i]);
}
v.push_back(0);
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
for(int i=1;i<=n;i++){
int id = lower_bound(v.begin(),v.end(),a[i]) - v.begin();
cnt[id] ++;
}
n = v.size()-1;
for(int i=1;i<=n;i++) {
sum[i] = sum[i-1] + cnt[i];
pre[i] = pre[i-1] + cnt[i] * v[i];
}
ll res = pre[n];
for(int i=1;i<=n;i++){
ll need = max(0ll, k - cnt[i]);
// 先左后右
{
ll tmp = 0;
int lnum = min(need, sum[i-1]);
// 只有当lnum>0时才需要计算,下面同理
if(lnum){
tmp = sum[i-1] * (v[i]-1) - pre[i-1];
tmp += lnum;
}
int rnum = min(need-lnum, sum[n] - sum[i]);
if(rnum){
tmp += (pre[n] - pre[i]) - (sum[n]-sum[i]) * (v[i]+1);
tmp += rnum;
}
res = min(res, tmp);
}
// 先右后左
{
ll tmp = 0;
int rnum = min(need, sum[n] - sum[i]);
if(rnum){
tmp = (pre[n] - pre[i]) - (sum[n] - sum[i]) * (v[i]+1);
tmp += rnum;
}
int lnum = min(need-rnum, sum[i-1]);
if(lnum){
tmp += sum[i-1] * (v[i]-1) - pre[i-1];
tmp += lnum;
}
res = min(res, tmp);
}
}
cout << res << endl;
return 0;
}

2400难度的题目,平常心看待就好了

CF-1328 F. Make k Equal的更多相关文章

  1. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  2. CF 633 F. The Chocolate Spree 树形dp

    题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...

  3. 698. Partition to K Equal Sum Subsets 数组分成和相同的k组

    [抄题]: Given an array of integers nums and a positive integer k, find whether it's possible to divide ...

  4. CF 494 F. Abbreviation(动态规划)

    题目链接:[http://codeforces.com/contest/1003/problem/F] 题意:给出一个n字符串,这些字符串按顺序组成一个文本,字符串之间用空格隔开,文本的大小是字母+空 ...

  5. [LeetCode] Partition to K Equal Sum Subsets 分割K个等和的子集

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  6. [Swift]LeetCode698. 划分为k个相等的子集 | Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  7. 698. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  8. CF 1138 F. Cooperative Game

    F. Cooperative Game 链接 题意: 有10个玩家,开始所有玩家在home处,每次可以让一些玩家沿着边前进一步,要求在3(t+c)步以内,到达终点. 分析: 很有意思的一道题.我们构造 ...

  9. CF 1041 F. Ray in the tube

    F. Ray in the tube 链接 题意: 有两条平行于x轴的直线A,B,每条直线上的某些位置有传感器.你需要确定A,B轴上任意两个整点位置$x_a$,$x_b$,使得一条光线沿$x_a→x_ ...

随机推荐

  1. C#扫盲篇(三):Action和Func委托--实话实说

    一.基础定义 老王想找老张的老婆出去耍,但是一看,老张还在厨房煮饭.于是老王就对老张隔壁的淑芬说:"等下老张吃完饭出去喝茶,你就把前门晒的苞谷收了,老张从左门出,你就收右边的苞谷,我就知道从 ...

  2. node中 path.join 和 path.resovle 区别

    console.log(__dirname) console.log('----') console.log(path.resolve(__dirname, '/a/b', '../')) conso ...

  3. 【SpringBoot1.x】SpringBoot1.x 数据访问

    SpringBoot1.x 数据访问 简介 对于数据访问层,无论是 SQL 还是 NOSQL,Spring Boot 默认采用整合 Spring Data 的方式进行统一处理,添加大量自动配置,屏蔽了 ...

  4. LeetCode225 用队列实现栈

    使用队列实现栈的下列操作: push(x) -- 元素 x 入栈 pop() -- 移除栈顶元素 top() -- 获取栈顶元素 empty() -- 返回栈是否为空 注意: 你只能使用队列的基本操作 ...

  5. SpringBoot入门 简单搭建和使用

    前言 差不多两年前,那个时候我准备要做毕业设计了,才第一次知道java有框架这种东西,在网上找了好多SSM的教程,那会儿真的是Spring+SpringMVC+MyBatis搭建的,印象极深的是还要写 ...

  6. 怎么判断是旧版本的ext3还是新版本?

    怎么判断是旧版本的ext3还是新版本的?   ---高性能419

  7. 【Oracle】Oracle SQL的优化软件

    对于SQL开发人员和DBA来说,根据业务需求写出一条正确的SQL很容易.但是SQL的执行性能怎么样呢?能优化一下跑得更快吗?如果不是资深  DBA,估计很多人都没有信心. 幸运的是,自动化优化工具可以 ...

  8. CTFshow-萌新赛逆向_签退

    查看题目信息 下载re3.pyc文件 使用uncompyle把re3.pyc反编译为re3.py uncompyle6 re3.pyc > re3.py 查看re3.py文件 # uncompy ...

  9. DOS的FOR命令用法总结

    鉴于dos自带的关于for命令的帮助信息看起来太简单,自己总结了一下,并增加了必要的实例,以备日后自己查阅.其中一些地方可能存在理解错误,敬请指出. [转发请注明出处]

  10. 使用Adobe Arcobat Pro DC生成PDF提示“PDFMaker文件遗失”新解决思路

    环境: 1.Window 7 2.Adobe Arcobat Pro DC 2020.009.20065 3.Microsoft Office 2007 4.WPS 2019 虽然可以使用插件实现文件 ...