2019牛客多校第二场E MAZE(线段树 + 矩阵)题解
题意:
n * m的矩阵,为0表示可以走,1不可以走。规定每走一步只能向下、向左、向右走。现给定两种操作:
一.1 x y表示翻转坐标(x,y)的0、1。
二.2 x y表示从(1,x)走到(n,y)有几种走法
思路:
假设\(dp[i][j]\)表示从下一层能到达(i,j)点的路径数,那么显然到达(i,j)的路径数为\(dp[i + 1][j]\)。
我们能很显然的得到转移方程\(dp[i][j] = \sum_{k = l}^r dp[i - 1][k]\),其中l~r为(i,j)下方能直接走到(i,j)的连续区间。
我们可以直接用矩阵维护这个转移方程:
\begin{matrix}
dp[i][1] & dp[i][2] & dp[i][3] & \cdots & dp[i][m]
\end{matrix}
\right)
*
A_i=
\left(
\begin{matrix}
dp[i + 1][1] & dp[i + 1][2] & dp[i + 1][3] & \cdots & dp[i + 1][m]
\end{matrix}
\right)
\]
然后用线段树维护矩阵乘积即可
从(1,x)走到(n,y)只需把x位置置为1,然后乘以\(\prod_{i = 1}^n A_i\)
代码:
#include<cstdio>
#include<set>
#include<cmath>
#include<stack>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 50000 + 5;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
int n, m, q;
int mp[maxn][12];
char s[12];
struct Mat{
ll s[12][12];
void init_zero(){
for(int i = 0; i < 12; i++)
for(int j = 0; j < 12; j++)
s[i][j] = 0;
}
};
Mat pmul(Mat a, Mat b, int len){
Mat c;
c.init_zero();
for(int i = 1; i <= len; i++){
for(int j = 1; j <= len; j++){
for(int k = 1; k <= len; k++){
c.s[i][j] = (c.s[i][j] + a.s[i][k] * b.s[k][j]) % MOD;
}
}
}
return c;
}
Mat mul[maxn << 2], a[maxn];
void pushup(int rt){
mul[rt] = pmul(mul[rt << 1], mul[rt << 1 | 1], m);
}
void build(int l, int r, int rt){
if(l == r){
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
mul[rt].s[i][j] = a[l].s[i][j];
return;
}
int m = (l + r) >> 1;
build(l, m, rt << 1);
build(m + 1, r, rt << 1 | 1);
pushup(rt);
}
void update(int pos, int l, int r, Mat aa, int rt){
if(l == r){
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
mul[rt].s[i][j] = aa.s[i][j];
return;
}
int m = (l + r) >> 1;
if(pos <= m)
update(pos, l, m, aa, rt << 1);
else
update(pos, m + 1, r, aa, rt << 1 | 1);
pushup(rt);
}
int main(){
scanf("%d%d%d", &n, &m, &q);
for(int i = 1; i <= n; i++){
scanf("%s", s + 1);
for(int j = 1; j <= m; j++){
mp[i][j] = s[j] - '0';
}
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
int base;
base = 1;
for(int k = j; k >= 1; k--){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
base = 1;
for(int k = j; k <= m; k++){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
}
}
// for(int k = 1; k <= n; k++){
// for(int i = 1; i <= m; i++){
// for(int j = 1; j <= m; j++){
// printf("%d ", a[k].s[i][j]);
// }
// puts("");
// }
// puts("*****");
// }
build(1, n, 1);
while(q--){
int ques, i, j;
scanf("%d", &ques);
scanf("%d%d", &i, &j);
if(ques == 1){
mp[i][j] = !mp[i][j];
for(int j = 1; j <= m; j++){
int base;
base = 1;
for(int k = j; k >= 1; k--){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
base = 1;
for(int k = j; k <= m; k++){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
}
update(i, 1, n, a[i], 1);
}
else{
Mat ret;
ret.init_zero();
ret.s[1][i] = 1;
ret = pmul(ret, mul[1], m);
printf("%lld\n", ret.s[1][j]);
}
}
return 0;
}
/*
2 6 1
0 0 0 1 0 0
1 0 1 0 1 0
*/
2019牛客多校第二场E MAZE(线段树 + 矩阵)题解的更多相关文章
- MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)
题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...
- [2019牛客多校第二场][E. MAZE]
题目链接:https://ac.nowcoder.com/acm/contest/882/E 题目大意:有一个\(n\times m\)的01矩阵,一开始可以从第一行的一个点出发,每次可以向左.向右. ...
- 2019牛客多校第二场 A Eddy Walker(概率推公式)
2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...
- 2019牛客多校第一场E ABBA(DP)题解
链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...
- 2019牛客多校第二场H-Second Large Rectangle
Second Large Rectangle 题目传送门 解题思路 先求出每个点上的高,再利用单调栈分别求出每个点左右两边第一个高小于自己的位置,从而而得出最后一个大于等于自己的位置,进而求出自己的位 ...
- [2019牛客多校第二场][G. Polygons]
题目链接:https://ac.nowcoder.com/acm/contest/882/G 题目大意:有\(n\)条直线将平面分成若干个区域,要求处理\(m\)次询问:求第\(q\)大的区域面积.保 ...
- 2019 牛客多校第二场 H Second Large Rectangle
题目链接:https://ac.nowcoder.com/acm/contest/882/H 题目大意 给定一个 n * m 的 01 矩阵,求其中第二大的子矩阵,子矩阵元素必须全部为 1.输出其大小 ...
- 2019牛客多校第二场H题(悬线法)
把以前的题补补,用悬线求面积第二大的子矩形.我们先求出最大子矩阵的面积,并记录其行三个方向上的悬线长度.然后排除这个矩形,记得还得特判少一行或者少一列的情况 #include <bits/std ...
- 2019牛客多校第二场D-Kth Minimum Clique
Kth Minimum Clique 题目传送门 解题思路 我们可以从没有点开始,把点一个一个放进去,先把放入一个点的情况都存进按照权值排序的优先队列,每次在新出队的集合里增加一个新的点,为了避免重复 ...
随机推荐
- jmeter-命令行执行及测试报告导出
问题1:GUI方式能够进行测试报告导出? 回答:目前找了很多资料,没有找到采用GUI方式测试完成,然后命令方式导出测试报告: 问题2:命令行导出测试报告的前提都有啥?---- 这里参考了老_张大大的博 ...
- Bitter.Core系列四:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore ORM 之 示例 查询
一: 单表模型驱动查询 如下示例代码演示: // 根据ID 查询: var studentquery = db.FindQuery<TStudentInfo>().QueryById(12 ...
- JAVAV EMAIL
package a; import java.util.Date;import java.util.Properties;import javax.mail.Authenticator;import ...
- 网络编程中 TCP 半开连接和TIME_WAIT 学习
https://blog.csdn.net/chrisnotfound/article/details/80112736 上面的链接就是说明来 SO_KEEPALIVE 选项 为什么还需要 在应用层开 ...
- Python学习【第4篇】:元组魔法
template = "i am {name},age:{age}" v = template.format(**{"name":'xiaoxing',&quo ...
- java小技巧
String 转 Date String classCode = RequestHandler.getString(request, "classCode"); SimpleDat ...
- 网际互连__OSI七层模型
概述 OSI(Open System Interconnection,开放系统互连)七层网络模型称为开放式系统互联参考模型 ,是一个逻辑上的定义.一个规范.它把网络从逻辑上分为了7层.每一层都有相关. ...
- Nginx图文详解
想必大家一定听说过 Nginx,若没听说过它,那么一定听过它的"同行"Apache 吧! Nginx 的产生 Nginx 同 Apache 一样都是一种 Web 服务器.基于 RE ...
- mysql:如何利用覆盖索引避免回表优化查询
说到覆盖索引之前,先要了解它的数据结构:B+树. 先建个表演示(为了简单,id按顺序建): id name 1 aa 3 kl 5 op 8 aa 10 kk 11 kl 14 jk 16 ml 17 ...
- three.js cannon.js物理引擎制作一个保龄球游戏
关于cannon.js我们已经学习了一些知识,今天郭先生就使用已学的cannon.js物理引擎的知识配合three基础知识来做一个保龄球小游戏,效果如下图,在线案例请点击博客原文. 我们需要掌握的技能 ...