• 题意:给你一组不重复的序列\(a\),每次可以选择一个数删除它左边或右边的一个数,并将选择的数append到数组\(b\)中,现在给你数组\(b\),问有多少种方案数得到\(b\).

  • 题解:我们可以记录\(b_i\)在\(a_i\)中的位置,然后枚举\(b_i\),取它在\(a_i\)的位置,然后看\(a_{i-1}\)和\(a_{i+1}\)的情况,因为我们append之后必须要删除\(a_{i-1}\)和\(a_{i+1}\)中的一个,并且所有元素都是不重复的,所以\(a_{i-1}\)和\(a_{i+1}\)必然不能出现在\(b_{i+1}...b_{n}\)中,而当我们append \(a_i\)之后,它也就变成了没用的数.

    所以我们可以讨论\(a_{i-1}\)和\(a_{i+1}\)的情况,假如它们两个都在\(b_{i+1}...b_{n}\)中出现,那么我们肯定不能构造出\(b\),直接\(ans=0\)然后结束,假如它们两个中有一个在\(b_{i+1}...b_n\)中出现,那么我们删除另外一个,因为删除的方案是固定的,所以对答案没有贡献,假如它们两个都没有出现,因为\(a_{i-1},a_i,a_{i+1}\)都是没有用的数,所以我们可以删去\(a_{i-1}\)或\(a_{i+1}\)中的任意一个,并且\(ans*=2\).

    具体实现我们可以用双向链表,并且标记\(b_i,...,b_n\),每次操作后将\(b_i\)的标记删除即可.

  • 代码:

#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
#define rep(a,b,c) for(int a=b;a<=c;++a)
#define per(a,b,c) for(int a=b;a>=c;--a)
const int N = 1e6 + 10;
const int mod = 998244353 ;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} struct misaka{
int pre;
int nxt;
}e[N]; int t;
int n,m;
int a[N],b[N];
int pos[N];
bool cnt[N]; void init(){
rep(i,1,n){
e[i].pre=i-1;
e[i].nxt=i+1;
}
e[1].pre=0;
e[n].nxt=0;
} void Delete(int x){
if(e[x].pre) e[e[x].pre].nxt=e[x].nxt;
if(e[x].nxt) e[e[x].nxt].pre=e[x].pre;
} int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>t;
while(t--){
cin>>n>>m;
rep(i,1,n) cnt[i]=false;
rep(i,1,n){
cin>>a[i];
pos[a[i]]=i;
}
rep(i,1,m){
cin>>b[i];
b[i]=pos[b[i]]; //映射到a数组的位置
cnt[b[i]]=true;
} init(); //双向链表的初始化
cnt[0]=true;
int ans=1; rep(i,1,m){
if(cnt[e[b[i]].pre]){
if(cnt[e[b[i]].nxt]){
ans=0;
break;
}
else{
Delete(e[b[i]].nxt);
}
}
else{
if(cnt[e[b[i]].nxt]){
Delete(e[b[i]].pre);
}
else{
ans=ans*2%mod;
Delete(e[b[i]].nxt);
}
}
cnt[b[i]]=false;
}
cout<<ans<<'\n';
} return 0;
}

Codeforces Round #681 (Div. 1, based on VK Cup 2019-2020 - Final) B. Identify the Operations (模拟,双向链表)的更多相关文章

  1. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final)【ABCDF】

    比赛链接:https://codeforces.com/contest/1443 A. Kids Seating 题意 构造一个大小为 \(n\) 的数组使得任意两个数既不互质也不相互整除,要求所有数 ...

  2. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) D. Extreme Subtraction (贪心)

    题意:有一个长度为\(n\)的序列,可以任意取\(k(1\le k\le n)\),对序列前\(k\)项或者后\(k\)减\(1\),可以进行任意次操作,问是否可以使所有元素都变成\(0\). 题解: ...

  3. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) C. The Delivery Dilemma (贪心,结构体排序)

    题意:你要买\(n\)份午饭,你可以选择自己去买,或者叫外卖,每份午饭\(i\)自己去买需要消耗时间\(b_i\),叫外卖需要\(a_i\),外卖可以同时送,自己只能买完一份后回家再去买下一份,问最少 ...

  4. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) B. Saving the City (贪心,模拟)

    题意:给你一个\(01\)串,需要将所有的\(1\)给炸掉,每次炸都可以将一整个\(1\)的联通块炸掉,每炸一次消耗\(a\),可以将\(0\)转化为\(1\),消耗\(b\),问将所有\(1\)都炸 ...

  5. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final) A. Kids Seating (规律)

    题意:给你一个正整数\(n\),在\([1,4n]\)中找出\(n\)个数,使得这\(n\)个数中的任意两个数不互质且不能两两整除. 题解:这题我是找的规律,从\(4n\)开始,往前取\(n\)个偶数 ...

  6. Codeforces Round 623(Div. 2,based on VK Cup 2019-2020 - Elimination Round,Engine)D. Recommendations

    VK news recommendation system daily selects interesting publications of one of n disjoint categories ...

  7. Codeforces Round #623 (Div. 1, based on VK Cup 2019-2020 - Elimination Round, Engine)A(模拟,并查集)

    #define HAVE_STRUCT_TIMESPEC #include<bits/stdc++.h> using namespace std; pair<]; bool cmp( ...

  8. Codeforces Round #623 (Div. 2, based on VK Cup 2019-2020 - Elimination Round, Engine)

    A. Dead Pixel(思路) 思路 题意:给我们一个m*n的表格,又给了我们表格中的一个点a,其坐标为(x, y),问在这个表格中选择一个不包括改点a的最大面积的矩形,输出这个最大面积 分析:很 ...

  9. Codeforces Round #623 (Div. 2, based on VK Cup 2019-2020 - Elimination Round, Engine) C. Restoring

    C. Restoring Permutation time limit per test1 second memory limit per test256 megabytes inputstandar ...

随机推荐

  1. LeetCode200 岛屿的个数

    给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1: 输入: ...

  2. 剑指offer 面试题3:数组中重复的数字

    题目描述 在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果输入长度为 ...

  3. leetcode 470. 用 Rand7() 实现 Rand10() (数学,优化策略)

    题目链接 https://leetcode-cn.com/problems/implement-rand10-using-rand7/ 题意: 给定一个rand7()的生成器,求解如何产生一个rand ...

  4. Unsafe Fileupload - Pikachu

    概述: 文件上传功能在web应用系统很常见,比如很多网站注册的时候需要上传头像.上传附件等等.当用户点击上传按钮后,后台会对上传的文件进行判断 比如是否是指定的类型.后缀名.大小等等,然后将其按照设计 ...

  5. SWPU2019

    一.题目打开介绍 这是题目本身打开的样子,继续进入题目 二.做题 简单的登陆界面和注册界面,没有sql注入已经尝试 申请发布广告 习惯性的测试 然后开始尝试注入,抓包, 两个都要,经过union注入判 ...

  6. 环境配置-Java-01-安装

    本文使用JDK1.8在windows64位系统下举例,其他版本在windows下的安装过程类似 0.百度云盘链接 考虑到官网下载需要登陆,这里给大家提供百度云盘链接(就是官网安装包),不过下载速度会比 ...

  7. 开发中的你的Git提交规范吗?

    1. 前言 目前大部分公司都在使用Git作为版本控制,每个程序员每天都要进行代码的提交.很多开发者也包括我自己,有时候赶时间或者图省事,就这么提交: git commit -m "修改bug ...

  8. MySQL下载与安装教程

    一,下载篇 1,首先访问MySQL官网下载页,https://dev.mysql.com/downloads/mysql/ 如果是MAC系统,操作系统请选择macOS,Windows则选择Window ...

  9. 第一章:起步(python环境搭建)

    Python 环境搭建 学习python的第一步,就是要学习python开发环境的配置,在配置好python开发环境后,你需要再安装一款比较趁手的编辑器,事实上,python解释器本身就可以进行一些编 ...

  10. 基于HBuilderX+UniApp+ColorUi+UniCloud 优宝库 开发实战(一)

    1.   优宝库介绍 优宝库是基于阿里妈妈.淘宝联盟 淘宝商品Api,前端使用HBuilderX + UniApp + ColorUi,后端采用UniClound 精选淘宝商品进行推荐的App程序.下 ...