使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练
https://blog.csdn.net/u011956147/article/details/53239325
https://blog.csdn.net/u011574296/article/details/78953681
一、数据集文件夹
新建一个文件夹,用来存放整个数据集,或者和voc2007一样的名字:VOC2007
然后像voc2007一样,在文件夹里面新建如下文件夹:
二、将训练图片放到JPEGImages
将所有的训练图片放到该文件夹里,然后将图片重命名为VOC2007的“000005.jpg”形式
图片重命名的代码(c++,python,matlab),参考:http://blog.csdn.net/u011574296/article/details/72956446
三、标注图片,标注文件保存到Annotations
使用labelIImg 标注自己的图片
1、在git上下载源码:https://github.com/tzutalin/labelImg
2、按照网页上的使用方法使用
(1)安装PyQt4和Lxml
(2)在labelImage 的目录下 shift+右键打开cmd 运行一下命令:
pyrcc4 -o resources.py resources.qrc
python labelImg.py
注:这个时候,就会出现labelimage的窗口
(3)labelimg窗口的使用方法:
• 修改默认的XML文件保存位置,可以用“Ctrl+R”,改为自定义位置,这里的路径不能包含中文,否则无法保存。
• 源码文件夹中使用notepad++打开data/predefined_classes.txt,可以修改默认类别,比如改成bus、car、building三个类别。
•“Open Dir”打开需要标注的样本图片文件夹,会自动打开第一张图片,开始进行标注
• 使用“Create RectBox”开始画框
• 完成一张图片后点击“Save”,此时XML文件已经保存到本地了。
• 点击“Next Image”转到下一张图片。
• 标注过程中可随时返回进行修改,后保存的文件会覆盖之前的。
• 完成标注后打开XML文件,发现确实和PASCAL VOC所用格式一样。
每个图片和标注得到的xml文件,JPEGImages文件夹里面的一个训练图片,对应Annotations里面的一个同名XML文件,一 一 对应,命名一致
标注自己的图片的时候,类别名称请用小写字母,比如汽车使用car,不要用Car
pascal.py中读取.xml文件的类别标签的代码: cls = self._class_to_ind[obj.find('name').text.lower().strip()]
写的只识别小写字母,如果你的标签含有大写字母,可能会出现KeyError的错误。
四、ImageSets\Main里的四个txt文件
在ImageSets里再新建文件夹,命名为Main,在Main文件夹中生成四个txt文件,即:
test.txt是测试集
train.txt是训练集
val.txt是验证集
trainval.txt是训练和验证集
VOC2007中,trainval大概是整个数据集的50%,test也大概是整个数据集的50%;train大概是trainval的50%,val大概是trainval的50%。
txt文件中的内容为样本图片的名字(不带后缀),格式如下:
根据已生成的xml,制作VOC2007数据集中的trainval.txt ; train.txt ; test.txt ; val.txt
trainval占总数据集的50%,test占总数据集的50%;train占trainval的50%,val占trainval的50%;
上面所占百分比可根据自己的数据集修改,如果数据集比较少,test和val可少一些
代码如下:
%注意修改下面四个值
xmlfilepath='E:\Annotations';
txtsavepath='E:\ImageSets\Main\';
trainval_percent=0.5; #trainval占整个数据集的百分比,剩下部分就是test所占百分比
train_percent=0.5; #train占trainval的百分比,剩下部分就是val所占百分比
xmlfile=dir(xmlfilepath);
numOfxml=length(xmlfile)-2;#减去.和.. 总的数据集大小
trainval=sort(randperm(numOfxml,floor(numOfxml*trainval_percent)));
test=sort(setdiff(1:numOfxml,trainval));
trainvalsize=length(trainval); #trainval的大小
train=sort(trainval(randperm(trainvalsize,floor(trainvalsize*train_percent))));
val=sort(setdiff(trainval,train));
ftrainval=fopen([txtsavepath 'trainval.txt'],'w');
ftest=fopen([txtsavepath 'test.txt'],'w');
ftrain=fopen([txtsavepath 'train.txt'],'w');
fval=fopen([txtsavepath 'val.txt'],'w');
for i=1:numOfxml
if ismember(i,trainval)
fprintf(ftrainval,'%s\n',xmlfile(i+2).name(1:end-4));
if ismember(i,train)
fprintf(ftrain,'%s\n',xmlfile(i+2).name(1:end-4));
else
fprintf(fval,'%s\n',xmlfile(i+2).name(1:end-4));
end
else
fprintf(ftest,'%s\n',xmlfile(i+2).name(1:end-4));
end
end
fclose(ftrainval);
fclose(ftrain);
fclose(fval);
fclose(ftest);
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
# -*- coding:utf-8 -*-
import os
import random
trainval_percent = 0.66
train_percent = 0.5
xmlfilepath = 'C:/Users/Administrator/Desktop/VOC2007-train/Annotations'
txtsavepath = 'C:/Users/Administrator/Desktop/VOC2007-train/ImageSets/Main'
total_xml = os.listdir(xmlfilepath) num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr) ftrainval = open('C:/Users/Administrator/Desktop/VOC2007-train/ImageSets/Main/trainval.txt', 'w')
ftest = open('C:/Users/Administrator/Desktop/VOC2007-train/ImageSets/Main/test.txt', 'w')
ftrain = open('C:/Users/Administrator/Desktop/VOC2007-train/ImageSets/Main/train.txt', 'w')
fval = open('C:/Users/Administrator/Desktop/VOC2007-train/ImageSets/Main/val.txt', 'w') for i in list:
name=total_xml[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name) ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练的更多相关文章
- faster rcnn训练自己的数据集
采用Pascal VOC数据集的组织结构,来构建自己的数据集,这种方法是faster rcnn最便捷的训练方式
- 将数据集做成VOC2007格式用于Faster-RCNN训练
1.命名 文件夹名VOC2007.图片名六位数字.将数据集相应的替换掉VOC2007中的数据. (Updated development kit, annotated test data ) 2. ...
- Faster Rcnn训练自己的数据集过程大白话记录
声明:每人都有自己的理解,动手实践才能对细节更加理解! 一.算法理解 此处省略一万字.................. 二.训练及源码理解 首先配置: 在./lib/utils文件下....运行 p ...
- 仿照CIFAR-10数据集格式,制作自己的数据集
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50801226 前一篇博客:C/C++ ...
- SSD-tensorflow-2 制作自己的数据集
VOC2007数据集格式: VOC2007详细介绍在这里,提供给大家有兴趣作了解.而制作自己的数据集只需用到前三个文件夹,所以请事先建好这三个文件夹放入同一文件夹内,同时ImageSets文件夹内包含 ...
- Windows10+YOLOv3实现检测自己的数据集(1)——制作自己的数据集
本文将从以下三个方面介绍如何制作自己的数据集 数据标注 数据扩增 将数据转化为COCO的json格式 参考资料 一.数据标注 在深度学习的目标检测任务中,首先要使用训练集进行模型训练.训练的数据集好坏 ...
- 自动化工具制作PASCAL VOC 数据集
自动化工具制作PASCAL VOC 数据集 1. VOC的格式 VOC主要有三个重要的文件夹:Annotations.ImageSets和JPEGImages JPEGImages 文件夹 该文件 ...
- fcn+caffe+制作自己的数据集
参考博客: http://blog.csdn.net/jacke121/article/details/78160398 以视网膜血管分割的数据集为例: 训练样本: 训练标签: 标签图的制作依据voc ...
- matlab遍历文件制作自己的数据集 .mat文件
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/9115788.html 看到深度学习里面的教学动不动就是拿MNIST数据集,或者是IMGPACK ...
随机推荐
- ffmpeg “inttypes.h”: No such file or directory
编译过程:错误一:无法打开包括文件:“inttypes.h”: No such file or directory解决方法:删除之,并在其之前添加如下代码: #if defined(WIN32) &a ...
- 指令——history
作用:查看历史命令 一般用于查看已经输入执行过的命令,也可以作为自己练习时的指标衡量,因为在历史命令里有行号显示.
- 微信群API接口
安卓微信的api,个人微信开发API协议,微信 ipad sdk,微信ipad协议,微信web版接口api,微信网页版接口,微信电脑版sdk,微信开发sdk,微信开发API,微信协议,微信接口文档sd ...
- [LeetCode] 928. Minimize Malware Spread II 最大程度上减少恶意软件的传播之二
(This problem is the same as Minimize Malware Spread, with the differences bolded.) In a network of ...
- 六十四、SAP中的内表的9种定义方式
一.内表一共有9种定义方式,如下: 二.执行如下 *&--------------------------------------------------------------------- ...
- 计算方法执行完的耗时 c#
Stopwatch watch = Stopwatch.StartNew(); //要执行的方法 test(); watch.Stop(); Console.WriteLine(string.Form ...
- Day 17:缓冲输出字符流和用缓冲输入输出实现登录、装饰者设计模式
输出字符流 Writer 所有输出字符流的基类, 抽象类. FileWriter 向文件输出字符数据的输出字符流. BufferedWriter 缓冲输出字符流 缓冲输出字符流作用: ...
- VUE中常用的一些方法
1.获取URL中的参数 export function getUrlKey(name) { return decodeURIComponent((new RegExp('[?|&]' + na ...
- 重新修改AD中PCB的形状快捷键
Altium Designer 快速修改板子形状为Keep-out layer大小 1,切换到 Keep-out layer层, 2,选择层,快捷键为S+Y: 3,设计-板子形状-按照选择 ...
- 如何下载Github的工程到本地,完成修改并提交
2019-02-22 对以下方法做了测试 可以生效 1 在Github上添加密钥 方法是:https://www.cnblogs.com/jason-beijing/p/9110187.html 2 ...