LeetCode60. 第k个排列

解法一:用next_permutation()函数,要求第k个排列,就从"123...n"开始调用 k - 1 次 next_permutation()函数即可。
class Solution {
public:
string getPermutation(int n, int k) {
string res;
for(int i = 1; i <= n; ++i) {
res += to_string(i);
}
for(int i = 0; i < k - 1; ++i) {
next_permutation(res.begin(), res.end());
}
return res;
}
};
解法二:
计数,计算第k个排列各个位的数字。
比如 n = 4, k = 10。 假设我们确定了第0位(最高位)的数字,那么剩下三位有三种排列,即剩下(n - 1)! = 3! = 6种排列。
因此如果第 0 位填1,那么当前的排列范围为第1个排列到第6个排列,6 < 10,因此第一个数字不填1。
那么再假设第 0 位填2,这里显然跨过了第 0 位填 1 的6个排列,因此 k - (n - 1)! = 10 - 3 ! = 4,
又由于第 0 位填2的排列也有 3! = 6个,6 > 4,
因此我们可以确定第 10 个排列的第 0 位(第一个数字)填2。然后就是要确定第 1 位(第二个数字),依旧是从小到大枚举:
假设第 1 位填 1,那么剩下没填的位数有两位,剩下的排列数就是 2! = 2, 2 < k (k现在是4)
因此第 1 位 不是填1 ,跳过第 1 位填 1 的所有排列, k 再更新一下:k -= 2! , 现在 k 的值是 2。
那再假设第 1 位填 3 (由于2已经用过了,所以跳过 2),第 0 位 填 2、第 1 位填 3 的排列数为 2, 2 >= k,
所以我们可以确定第 1 位 填3。现在枚举第 2 位(第三个数字)的情况,假设第 2 位填1,剩下只剩一位没填,排列数为 1, 1 < k (k的值是2)
所以跳过第 2 位为 1 的排列,更新k : k -= 1! , k现在为1,
由于2,3都已经用过了,所以跳过,假设第 2 位 填 4: 剩下的排列数为1, 1 >= k,
因此我们得到第 2 位数字为 4.这样第 3 位(第四个数字,即最后一个)只能填 我们还没有填的1.
所以我们知道了当 n 为 4 时,第10个排列的数字为 "2341"
根据上面的思路,得到如下代码:
class Solution {
public:
string getPermutation(int n, int k) {
string res;
vector<bool> used(10); //used记录每个数字是否使用过
for(int i = 0; i < n; ++i) { //枚举每个位置填的数字,确定了 0 ~ n - 1位填的每个数字后就返回结果
int fact = 1; //fact是剩下的位数可以组成的排列数,大小为 (n - i - 1)!
for(int j = 1; j <= n - i - 1; ++j) { //前面已经填了 i + 1位数,剩下的位存在的总排列数就是 (n - (i + 1))!
fact *= j;
}
for(int j = 1; j<= n; ++j) { //从小到大枚举当前位置可以填的数字
if(used[j] == false) { //当前位置只可以填没有用过的数字
if(fact < k) { //如果剩下的排列数小于 k ,说明第k个排列的第 i 个位置的数字不是 j(比 j 大)
k -= fact; //跳过第 i 位为 j 的所有排列,并更新 k
} else {
res += to_string(j); //否则,说明第 k 个排列的第 i 个数字为 j
used[j] = true; //记录数字 j 已经被使用过,后面的位置就不能再填 j 了
break; //已经确定了第 i 位的数字,跳出当前循环,继续判断 i + 1(下一位)的数字
}
}
}
}
return res;
}
};
LeetCode60. 第k个排列的更多相关文章
- [Swift]LeetCode60. 第k个排列 | Permutation Sequence
The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the ...
- LEETCODE60——第K个排列
class Solution { public: string getPermutation(int n, int k) { '); vector<bool> flag(n, false) ...
- Leetcode60. Permutation Sequence第k个排列
给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...
- LeetCode 笔记21 生成第k个排列
题目是这样的: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all ...
- LinkCode 第k个排列
http://www.lintcode.com/zh-cn/problem/permutation-sequence/# 原题 给定 n 和 k,求123..n组成的排列中的第 k 个排列. 注意事项 ...
- 力扣算法题—060第K个排列
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...
- LeetCode 60 第K个排列
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...
- LeetCode(60): 第k个排列
Medium! 题目描述: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
随机推荐
- Java实现蓝桥杯第八届决赛 对局匹配
标题:对局匹配 小明喜欢在一个围棋网站上找别人在线对弈.这个网站上所有注册用户都有一个积分,代表他的围棋水平. 小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起.如果两 ...
- Java实现 LeetCode 92 反转链表 II
92. 反转链表 II 反转从位置 m 到 n 的链表.请使用一趟扫描完成反转. 说明: 1 ≤ m ≤ n ≤ 链表长度. 示例: 输入: 1->2->3->4->5-> ...
- SQL server 常用的数据库 DDL语言
use (数据库名) //切换到目标数据库 if exists (select * from sysdatabases where name='数据库名') //如果括号里面是查看有没有这个数据库 d ...
- Java实现 蓝桥杯 算法训练 Multithreading
问题描述 现有如下一个算法: repeat ni times yi := y y := yi+1 end repeat 令n[1]为你需要算加法的第一个数字,n[2]为第二个,-n[N]为第N个数字( ...
- 数据的存储结构浅析LSM-Tree和B-tree
目录 顺序存储与哈希索引 SSTable和LSM tree B-Tree 存储结构的比对 小结 本篇主要讨论的是不同存储结构(主要是LSM-tree和B-tree),它们应对的不同场景,所采用的底层存 ...
- 总结梳理:webpack中如何使用vue
1. 安装vue的包 cnpm i vue -S 2. 由于在webpack中,推荐使用 .vue这个组件模板文件定义的组件,所以,需要安装, 能解析这个文件的loader: cnpm i vu ...
- 还在用SimpleDateFormat格式化时间?小心经理锤你
还在用SimpleDateFormat格式化时间?小心经理锤你 场景 本来开开心心的周末时光,线上突然就疯狂报错,以为程序炸了,截停日志,发现是就是类似下述一段错误 java.lang.NumberF ...
- iOS -UIColor随机生成颜色的方法
在iOS 中的UIColor拥有这么多关于颜色的类方法,对于一般常见的UI控件,我们可以通过[UIColorblackColor]设置背景色 eg:设置button 的背景色为红色 UIButton ...
- airpods2隐藏的使用技巧(十)点
airpods的凭借出色的外观.不错的音质以及非常人性化的用户体验秒杀了同类型的许多真无线蓝牙耳机,以下是第二代产品airpods2一些使用的技巧,推荐给大家. 一. 随时随地查看airpods2 ...
- 关于thinkhphp3.1中废弃 preg_replace /e 修饰符
警告:preg_replace(): The /e modifier is deprecated, use preg_replace_callback instead 网上查了下 发现 php5.5版 ...