LeetCode60. 第k个排列

解法一:用next_permutation()函数,要求第k个排列,就从"123...n"开始调用 k - 1 次 next_permutation()函数即可。
class Solution {
public:
string getPermutation(int n, int k) {
string res;
for(int i = 1; i <= n; ++i) {
res += to_string(i);
}
for(int i = 0; i < k - 1; ++i) {
next_permutation(res.begin(), res.end());
}
return res;
}
};
解法二:
计数,计算第k个排列各个位的数字。
比如 n = 4, k = 10。 假设我们确定了第0位(最高位)的数字,那么剩下三位有三种排列,即剩下(n - 1)! = 3! = 6种排列。
因此如果第 0 位填1,那么当前的排列范围为第1个排列到第6个排列,6 < 10,因此第一个数字不填1。
那么再假设第 0 位填2,这里显然跨过了第 0 位填 1 的6个排列,因此 k - (n - 1)! = 10 - 3 ! = 4,
又由于第 0 位填2的排列也有 3! = 6个,6 > 4,
因此我们可以确定第 10 个排列的第 0 位(第一个数字)填2。然后就是要确定第 1 位(第二个数字),依旧是从小到大枚举:
假设第 1 位填 1,那么剩下没填的位数有两位,剩下的排列数就是 2! = 2, 2 < k (k现在是4)
因此第 1 位 不是填1 ,跳过第 1 位填 1 的所有排列, k 再更新一下:k -= 2! , 现在 k 的值是 2。
那再假设第 1 位填 3 (由于2已经用过了,所以跳过 2),第 0 位 填 2、第 1 位填 3 的排列数为 2, 2 >= k,
所以我们可以确定第 1 位 填3。现在枚举第 2 位(第三个数字)的情况,假设第 2 位填1,剩下只剩一位没填,排列数为 1, 1 < k (k的值是2)
所以跳过第 2 位为 1 的排列,更新k : k -= 1! , k现在为1,
由于2,3都已经用过了,所以跳过,假设第 2 位 填 4: 剩下的排列数为1, 1 >= k,
因此我们得到第 2 位数字为 4.这样第 3 位(第四个数字,即最后一个)只能填 我们还没有填的1.
所以我们知道了当 n 为 4 时,第10个排列的数字为 "2341"
根据上面的思路,得到如下代码:
class Solution {
public:
string getPermutation(int n, int k) {
string res;
vector<bool> used(10); //used记录每个数字是否使用过
for(int i = 0; i < n; ++i) { //枚举每个位置填的数字,确定了 0 ~ n - 1位填的每个数字后就返回结果
int fact = 1; //fact是剩下的位数可以组成的排列数,大小为 (n - i - 1)!
for(int j = 1; j <= n - i - 1; ++j) { //前面已经填了 i + 1位数,剩下的位存在的总排列数就是 (n - (i + 1))!
fact *= j;
}
for(int j = 1; j<= n; ++j) { //从小到大枚举当前位置可以填的数字
if(used[j] == false) { //当前位置只可以填没有用过的数字
if(fact < k) { //如果剩下的排列数小于 k ,说明第k个排列的第 i 个位置的数字不是 j(比 j 大)
k -= fact; //跳过第 i 位为 j 的所有排列,并更新 k
} else {
res += to_string(j); //否则,说明第 k 个排列的第 i 个数字为 j
used[j] = true; //记录数字 j 已经被使用过,后面的位置就不能再填 j 了
break; //已经确定了第 i 位的数字,跳出当前循环,继续判断 i + 1(下一位)的数字
}
}
}
}
return res;
}
};
LeetCode60. 第k个排列的更多相关文章
- [Swift]LeetCode60. 第k个排列 | Permutation Sequence
The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the ...
- LEETCODE60——第K个排列
class Solution { public: string getPermutation(int n, int k) { '); vector<bool> flag(n, false) ...
- Leetcode60. Permutation Sequence第k个排列
给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...
- LeetCode 笔记21 生成第k个排列
题目是这样的: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all ...
- LinkCode 第k个排列
http://www.lintcode.com/zh-cn/problem/permutation-sequence/# 原题 给定 n 和 k,求123..n组成的排列中的第 k 个排列. 注意事项 ...
- 力扣算法题—060第K个排列
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...
- LeetCode 60 第K个排列
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...
- LeetCode(60): 第k个排列
Medium! 题目描述: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
随机推荐
- SpringBoot 及其 基本原理、配置文件(二)
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一.SpringBoot 的版本与启动过程 1.SpringBoot都是jar工程 2.Spring ...
- 【RT-Thread笔记】BH1750软件包的使用
BH1750简介 BH1750是一种用于两线制串行总线接口的16位数字型光强度传感器集成电路.利用它的高分辨率可以探测较大范围的光强度变化.(1lx~65535lx). 创建工程.验证 在RT-Thr ...
- Java实现 LeetCode 794 有效的井字游戏 (暴力分析)
794. 有效的井字游戏 用字符串数组作为井字游戏的游戏板 board.当且仅当在井字游戏过程中,玩家有可能将字符放置成游戏板所显示的状态时,才返回 true. 该游戏板是一个 3 x 3 数组,由字 ...
- Java实现蓝桥杯历届试题买不到的数目
历届试题 买不到的数目 时间限制:1.0s 内存限制:256.0MB 提交此题 锦囊1 锦囊2 问题描述 小明开了一家糖果店.他别出心裁:把水果糖包成4颗一包和7颗一包的两种.糖果不能拆包卖. 小朋友 ...
- Java实现 LeetCode 373 查找和最小的K对数字
373. 查找和最小的K对数字 给定两个以升序排列的整形数组 nums1 和 nums2, 以及一个整数 k. 定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2. 找 ...
- Java实现 蓝桥杯VIP 算法训练 P0504
算法训练 P0504 时间限制:1.0s 内存限制:256.0MB Anagrams指的是具有如下特性的两个单词:在这两个单词当中,每一个英文字母(不区分大小写)所出现的次数都是相同的.例如,Uncl ...
- Java实现 LeetCode 154 寻找旋转排序数组中的最小值 II(二)
154. 寻找旋转排序数组中的最小值 II 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 请找 ...
- java实现报数游戏
报数游戏 有n个孩子站成一圈,从第一个孩子开始顺时针方向报数,报到3的人出列,下一个人继续从1报数,直到最后剩下一个孩子为止.问剩下第几个孩子.下面的程序以10个孩子为例,模拟了这个过程,请完善之(提 ...
- Java实现第八届蓝桥杯包子凑数
包子凑数 题目描述 小明几乎每天早晨都会在一家包子铺吃早餐.他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子.每种蒸笼都有非常多笼,可以认为是无限笼. 每当有顾客想买X个包子,卖包子的大叔 ...
- MMDVM中继板测试软件MMDVMCal
运行方法: 只支持windows 64位系统 32位下载:https://share.weiyun.com/52uHAO5 64位下载:https://share.weiyun.com/5IgdqvL ...