本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5。模型评估指标位于包org.apache.spark.ml.evaluation下。

模型评估指标是指测试集的评估指标,而不是训练集的评估指标

1、回归评估指标

RegressionEvaluator

Evaluator for regression, which expects two input columns: prediction and label.

评估指标支持以下几种:

val metricName: Param[String]

  • "rmse" (default): root mean squared error
  • "mse": mean squared error
  • "r2": R2 metric
  • "mae": mean absolute error

Examples

# import dependencies
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.evaluation.RegressionEvaluator // Load training data
val data = spark.read.format("libsvm")
.load("/data1/software/spark/data/mllib/sample_linear_regression_data.txt") val lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8) // Fit the model
val lrModel = lr.fit(training) // Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
println(s"Train MSE: ${trainingSummary.meanSquaredError}")
println(s"Train RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"Train MAE: ${trainingSummary.meanAbsoluteError}")
println(s"Train r2: ${trainingSummary.r2}") val predictions = lrModel.transform(test) // 计算精度
val evaluator = new RegressionEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("mse")
val accuracy = evaluator.evaluate(predictions)
print(s"Test MSE: ${accuracy}")

输出:

Train MSE: 101.57870147367461
Train RMSE: 10.078625971513905
Train MAE: 8.108865602095849
Train r2: 0.039467152584195975 Test MSE: 114.28454406581636

2、分类评估指标

2.1 BinaryClassificationEvaluator

Evaluator for binary classification, which expects two input columns: rawPrediction and label. The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label 1) or of type vector (length-2 vector of raw predictions, scores, or label probabilities).

评估指标支持以下几种:

val metricName: Param[String]
param for metric name in evaluation (supports "areaUnderROC" (default), "areaUnderPR")

Examples

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator // Load training data
val data = spark.read.format("libsvm").load("/data1/software/spark/data/mllib/sample_libsvm_data.txt") val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8) // Fit the model
val lrModel = lr.fit(train) // Summarize the model over the training set and print out some metrics
val trainSummary = lrModel.summary
println(s"Train accuracy: ${trainSummary.accuracy}")
println(s"Train weightedPrecision: ${trainSummary.weightedPrecision}")
println(s"Train weightedRecall: ${trainSummary.weightedRecall}")
println(s"Train weightedFMeasure: ${trainSummary.weightedFMeasure}") val predictions = lrModel.transform(test)
predictions.show(5) // 模型评估
val evaluator = new BinaryClassificationEvaluator()
.setLabelCol("label")
.setRawPredictionCol("rawPrediction")
.setMetricName("areaUnderROC")
val auc = evaluator.evaluate(predictions)
print(s"Test AUC: ${auc}") val mulEvaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("weightedPrecision")
val precision = evaluator.evaluate(predictions)
print(s"Test weightedPrecision: ${precision}")

输出结果:

Train accuracy: 0.9873417721518988
Train weightedPrecision: 0.9876110961486668
Train weightedRecall: 0.9873417721518987
Train weightedFMeasure: 0.9873124561568825 +-----+--------------------+--------------------+--------------------+----------+
|label| features| rawPrediction| probability|prediction|
+-----+--------------------+--------------------+--------------------+----------+
| 0.0|(692,[122,123,148...|[0.29746771419036...|[0.57382336211209...| 0.0|
| 0.0|(692,[125,126,127...|[0.42262389447949...|[0.60411095396791...| 0.0|
| 0.0|(692,[126,127,128...|[0.74220898710237...|[0.67747871191347...| 0.0|
| 0.0|(692,[126,127,128...|[0.77729372618481...|[0.68509655708828...| 0.0|
| 0.0|(692,[127,128,129...|[0.70928896866149...|[0.67024402884354...| 0.0|
+-----+--------------------+--------------------+--------------------+----------+ Test AUC: 1.0 Test weightedPrecision: 1.0

2.2 MulticlassClassificationEvaluator

Evaluator for multiclass classification, which expects two input columns: prediction and label.

注:既然适用于多分类,当然适用于上面的二分类

评估指标支持如下几种:

val metricName: Param[String]
param for metric name in evaluation (supports "f1" (default), "weightedPrecision", "weightedRecall", "accuracy")

Examples

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.DecisionTreeClassificationModel
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer} // Load the data stored in LIBSVM format as a DataFrame.
val data = spark.read.format("libsvm").load("/data1/software/spark/data/mllib/sample_libsvm_data.txt") // Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data)
// Automatically identify categorical features, and index them.
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4) // features with > 4 distinct values are treated as continuous.
.fit(data) // Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3)) // Train a DecisionTree model.
val dt = new DecisionTreeClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures") // Convert indexed labels back to original labels.
val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels) // Chain indexers and tree in a Pipeline.
val pipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, dt, labelConverter)) // Train model. This also runs the indexers.
val model = pipeline.fit(trainingData) // Make predictions.
val predictions = model.transform(testData) // Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5) // Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("indexedLabel")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println(s"Test Error = ${(1.0 - accuracy)}")

输出结果:

+--------------+-----+--------------------+
|predictedLabel|label| features|
+--------------+-----+--------------------+
| 0.0| 0.0|(692,[95,96,97,12...|
| 0.0| 0.0|(692,[122,123,124...|
| 0.0| 0.0|(692,[122,123,148...|
| 0.0| 0.0|(692,[126,127,128...|
| 0.0| 0.0|(692,[126,127,128...|
+--------------+-----+--------------------+
only showing top 5 rows Test Error = 0.040000000000000036

Spark ML机器学习库评估指标示例的更多相关文章

  1. 【Udacity】机器学习性能评估指标

    评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) ...

  2. Spark ML机器学习

    Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...

  3. [机器学习] 性能评估指标(精确率、召回率、ROC、AUC)

    混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 ...

  4. UDA机器学习基础—评估指标

    这里举例说明 混淆矩阵  精确率 召回率  F1

  5. 机器学习性能评估指标(精确率、召回率、ROC、AUC)

    http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2

  6. Spark 中的机器学习库及示例

    MLlib 是 Spark 的机器学习库,旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib 由一些通用的学习算法和工具组成,包括分类.回归.聚类.协同过滤.降维等,同时还包括底层的优化 ...

  7. 《Spark 官方文档》机器学习库(MLlib)指南

    spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...

  8. 掌握Spark机器学习库(课程目录)

    第1章 初识机器学习 在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题. 1-1 导学 1-2 机器学习概述 1- ...

  9. [DeeplearningAI笔记]ML strategy_1_1正交化/单一数字评估指标

    机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确 ...

随机推荐

  1. 通过javascri实现输入框只能输入数字

    输入框只能输入数字 <input type="text" onkeyup="value=value.replace(/[^\d]/g,'');"> ...

  2. Centos内核更新

    内核更新操作后面补上.暂时记录删除多余内核操作 删除卸载多余内核 1.系统启动时,选择需要保留的内核进入系统,通过uname -a命令查看当前内核版本,以防误删 2. 使用rpm -qa | grep ...

  3. VirtualBox端口映射

    问题:VirtualBox里面启动Django项目后发现在虚拟机能打开,在物理机上无法打开如图: 解决方法:端口映射 问题解决!其他端口问题只需要添加对应端口即可,比如xshell连接虚拟机要添加22 ...

  4. poj-2828 Buy Tickets(线段树,排队问题,逆向思维)

    题目地址:POJ 2828 Buy Tickets Description Railway tickets were difficult to buy around the Lunar New Yea ...

  5. 数据结构与算法——认识O(NlogN)的排序(2)

    输入整型数组和排序标识,对其元素按照升序或降序进行排序 (一组测试用例可能会有多组数据) 接口说明 原型: void sortIntegerArray(Integer[] pIntegerArray, ...

  6. 基础篇六:Nginx编译配置参数

  7. 基于TCP的大文件发送、UDP、socketserver

    基于TCP的大文件发送 #server服务端 import struct import json import os import socket server = socket.socket() # ...

  8. The file named error_log is too large

    The file named errorlog is too large */--> The file named errorlog is too large 1 Problem One day ...

  9. 之前项目使用的轻量的goweb框架

    技术栈 go 主开发语言 基于 gorilla 项目 javascript(nodejs) 部分小工具,josn对象转换,自动编译 C#,codesmith通用代码生成,生成最基本的crud和翻页. ...

  10. 详解js面向对象编程

    转自:http://segmentfault.com/a/1190000000713346 基本概念 ECMA关于对象的定义是:”无序属性的集合,其属性可以包含基本值.对象或者函数.“对象的每个属性或 ...