Accuracy/Error rate

ACC = (TP+TN)/(P+N)

ERR = (FP+FN)/(P+N) = 1-ACC

Confusion matrix

Precision/Recall/F1

Precision = TP/(TP+FP)-- positive predictive value

Recall= TP/(TP+FN)  -- true positive rate

F1=1/(1/precision+1/recall)

ROC

True positive rate (TPR): the ratio of positive instances that are correctly classified as positive

TPR = TP/(TP+FN) = recall

True negative rate (TNR): the ratio of negative instances that are correctly classified as negative

TNR = TN/(TN+FP) = specify

False positive rate (FPR): the ratio of negative instances that are incorrectly classified as positive.

FPR = FN/(TN+FP) = 1-specify

ROC: TPR vs FPR

Matthews correlation coefficient

Logarithm loss/cross entropy

Evaluation metrics for classification的更多相关文章

  1. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  2. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  3. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  4. 2013:Audio Tag Classification - MIREX Wiki

    Contents [hide] 1 Description 1.1 Task specific mailing list 2 Data 2.1 MajorMiner Tag Dataset 2.2 M ...

  5. How to handle Imbalanced Classification Problems in machine learning?

    How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...

  6. 《Spark 官方文档》机器学习库(MLlib)指南

    spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...

  7. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  8. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  9. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

随机推荐

  1. springmvc无法访问JS,CSS等文件

    配置好web.xml中的dispatchservlet后,js,css,都不能正常显示 web.xml配置文件 <!-- 核心控制器 --> <servlet> <ser ...

  2. 1.求子集,2.动态创建action

    功能待完善 #ifndef MYMAINWINDOW_H #define MYMAINWINDOW_H #include <QMainWindow> #include <QTable ...

  3. UVA - 714 Copying Books (抄书)(二分+贪心)

    题意:把一个包含m个正整数的序列划分成k个(1<=k<=m<=500)非空的连续子序列,使得每个正整数恰好属于一个序列(所有的序列不重叠,且每个正整数都要有所属序列).设第i个序列的 ...

  4. (转)null和NULL和nullptr和””区别

    突然想到这个有趣的问题:C语言和C++对大小写是敏感的,也就是说null和NULL是区别对待的.NULL代表空地址,null只是一个符号.便来深究,看了很多资料,总结如下: 其实null和NULL都是 ...

  5. 20180122 PyTorch学习资料汇总

    PyTorch发布一年团队总结:https://zhuanlan.zhihu.com/p/33131356?gw=1&utm_source=qq&utm_medium=social 官 ...

  6. C++ STD Gems05

    find.find_if.find_first_of.mismatch.search.adjacent_find #include <iostream> #include <vect ...

  7. HZNU-ACM寒假集训Day10小结 树-树形DP

    树形DP 加分二叉树 洛谷P1040 注意中序遍历的特点:当根节点编号k时,编号小于k的都在其左子树上,编号大于k的都在右子树 转移方程 f[i,j]=max{f[i,k-1]*f[k+1,j]+d[ ...

  8. mysql第四篇:数据操作之单表查询

    单表查询 一.简单查询 -- 创建表 DROP TABLE IF EXISTS `person`; CREATE TABLE `person` ( `id` ) NOT NULL AUTO_INCRE ...

  9. Spring Boot Actuator Endpoints

    常用内建的Endpoints: beans:显示当前Spring应用上下文的Spring Bean完整列表(包含所有ApplicationContext的层次) conditions:显示当前应用所有 ...

  10. Sequence Models Week 1 Character level language model - Dinosaurus land

    Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, ...