Evaluation metrics for classification
Accuracy/Error rate
ACC = (TP+TN)/(P+N)
ERR = (FP+FN)/(P+N) = 1-ACC
Confusion matrix
Precision/Recall/F1
Precision = TP/(TP+FP)-- positive predictive value
Recall= TP/(TP+FN) -- true positive rate
F1=1/(1/precision+1/recall)
ROC
True positive rate (TPR): the ratio of positive instances that are correctly classified as positive
TPR = TP/(TP+FN) = recall
True negative rate (TNR): the ratio of negative instances that are correctly classified as negative
TNR = TN/(TN+FP) = specify
False positive rate (FPR): the ratio of negative instances that are incorrectly classified as positive.
FPR = FN/(TN+FP) = 1-specify
ROC: TPR vs FPR
Matthews correlation coefficient

Logarithm loss/cross entropy

Evaluation metrics for classification的更多相关文章
- Datasets and Evaluation Metrics used in Recommendation System
Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...
- Sklearn使用良心完整入门教程
The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...
- [转] Implementing a CNN for Text Classification in TensorFlow
Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...
- 2013:Audio Tag Classification - MIREX Wiki
Contents [hide] 1 Description 1.1 Task specific mailing list 2 Data 2.1 MajorMiner Tag Dataset 2.2 M ...
- How to handle Imbalanced Classification Problems in machine learning?
How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...
- 《Spark 官方文档》机器学习库(MLlib)指南
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...
- SparkMLlib之 logistic regression源码分析
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
随机推荐
- 干货分享:如何搞定Essay Paragraph部分?
想要写出一篇高质量的留学生作业,首先要从写好段落(paragraph)开始.那么今天就随小编一起来看看,如何写好Paragraph部分? 段落:在英文中我们俗称为paragraph,而一篇英文文章通常 ...
- SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning
题目:SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning 作者: Lo ...
- vue小练习--音乐播放器
1 首先建一个文件夹 放几首歌曲 2 看代码 1)基本版本 <!DOCTYPE html> <html lang="zh-CN"> <head> ...
- Origin中使用CopyPage复制图片到Word后比例失调解决办法
Origin画图的优势很多,其图形美观易于操作.对我而言,Origin最大的优点就是与Word兼容,在Origin操作界面空白处直接使用右键CopyPage命令,然后在Word中使用粘贴命令即可插入图 ...
- 编程入门-Eclipse项目导出和导入
编程入门-Eclipse项目导出和导入 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.导出项目 1>.如下图所示,在项目目录上右击鼠标,依次点击"Export& ...
- UVA - 11400 Lighting System Design(照明系统设计)(dp)
题意:共有n种(n<=1000)种灯泡,每种灯泡用4个数值表示.电压V(V<=132000),电源费用K(K<=1000),每个灯泡的费用C(C<=10)和所需灯泡的数量L(1 ...
- Day2-T2
原题目 Describe:贪心,保证至少一条路牛的数量最多 code: #include<bits/stdc++.h> using namespace std; long long n,m ...
- Spring注解@ResponseBody
@Responsebody 将内容或对象作为http响应正文返回,并调用适合HttpMessageConverter的Adapter转换对象,写入输出流. 写在方法上面表示:表示该方法的返回结果直接写 ...
- Tomcat Access Log 的格式
名称 含义 %a Remote IP address %A Local IP address %b Bytes sent, excluding HTTP headers, or ‘-‘ if zero ...
- python函数-装饰器
python函数-装饰器 1.装饰器的原则--开放封闭原则 开放:对于添加新功能是开放的 封闭:对于修改原功能是封闭的 2.装饰器的作用 在不更改原函数调用方式的前提下对原函数添加新功能 3.装饰器的 ...
