Accuracy/Error rate

ACC = (TP+TN)/(P+N)

ERR = (FP+FN)/(P+N) = 1-ACC

Confusion matrix

Precision/Recall/F1

Precision = TP/(TP+FP)-- positive predictive value

Recall= TP/(TP+FN)  -- true positive rate

F1=1/(1/precision+1/recall)

ROC

True positive rate (TPR): the ratio of positive instances that are correctly classified as positive

TPR = TP/(TP+FN) = recall

True negative rate (TNR): the ratio of negative instances that are correctly classified as negative

TNR = TN/(TN+FP) = specify

False positive rate (FPR): the ratio of negative instances that are incorrectly classified as positive.

FPR = FN/(TN+FP) = 1-specify

ROC: TPR vs FPR

Matthews correlation coefficient

Logarithm loss/cross entropy

Evaluation metrics for classification的更多相关文章

  1. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  2. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  3. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  4. 2013:Audio Tag Classification - MIREX Wiki

    Contents [hide] 1 Description 1.1 Task specific mailing list 2 Data 2.1 MajorMiner Tag Dataset 2.2 M ...

  5. How to handle Imbalanced Classification Problems in machine learning?

    How to handle Imbalanced Classification Problems in machine learning? from:https://www.analyticsvidh ...

  6. 《Spark 官方文档》机器学习库(MLlib)指南

    spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...

  7. SparkMLlib之 logistic regression源码分析

    最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...

  8. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  9. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

随机推荐

  1. Windows + Python + flup + flask + fastcgi + Nginx配置

    Nginx配置 # HTTPS server { listen ssl; server_name kvaccount.xx.io; ssl_certificate "C:/xx/conf/s ...

  2. 最简单的前端获取后台的json值(后台怎么返回一个json对象到前台)

    (说一下这个外部包jackson一般不用了,现在大家都用马云儿子的FastJson 下面服务器代码我就不改了大家随意用什么外部包)2019.1.14日改 我使用了外部包jackson(杰克逊哈哈哈啊) ...

  3. JAVA中序列化和反序列化中的静态成员问题

    关于这个标题的内容是面试笔试中比较常见的考题,大家跟随我的博客一起来学习下这个过程. ? ? JAVA中的序列化和反序列化主要用于: (1)将对象或者异常等写入文件,通过文件交互传输信息: (2)将对 ...

  4. js如何操作或是更改sass里的变量

    /*上网搜索了好多方法,最终只有这一种比较适合*/ 参考: https://blog.csdn.net/weixin_44392565/article/details/85755592 https:/ ...

  5. 【转载】WebDriver拾级而上·之零 WebDriver理论

    Selenium2.0 = Selenium1.0 + WebDriver(也就是说Selenium2.0合并了这两个项目)   Selenium1.0可以使用任何编程语言,但是有个先决条件就是必须支 ...

  6. LightOJ - 1282 Leading and Trailing (数论)

    题意:求nk的前三位和后三位. 分析: 1.后三位快速幂取模,注意不足三位补前导零. 补前导零:假如nk为1234005,快速幂取模后,得到的数是5,因此输出要补前导零. 2.前三位: 令n=10a, ...

  7. UVA - 11212 Editing a Book(IDA*算法+状态空间搜索)

    题意:通过剪切粘贴操作,将n个自然段组成的文章,排列成1,2,……,n.剪贴板只有一个,问需要完成多少次剪切粘贴操作可以使文章自然段有序排列. 分析: 1.IDA*搜索:maxn是dfs的层数上限,若 ...

  8. GetqueueStatus

    #include "stdafx.h" #include <Windows.h> #include <process.h> #include <ios ...

  9. Day2-T4

    原题目 当然这是原题+,要输路径的.所以必须DFS. Describe:DP or DFS code: #include<bits/stdc++.h> using namespace st ...

  10. PHP中Cookie与Session的异同以及使用

    Cookie与Session的异同: 一.cookie机制 Cookies是服务器在本地机器上存储的小段文本并随每一个请求发送至同一个服务器.IETF RFC 2965 HTTP State Mana ...