Raising Modulo Numbers
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5532   Accepted: 3210

Description

People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment
was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow: 



Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players
including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers. 



You should write a program that calculates the result and is able to find out who won the game. 


Input

The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be
divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.

Output

For each assingnement there is the only one line of output. On this line, there is a number, the result of expression

(A1B1+A2B2+ ... +AHBH)mod M.

Sample Input

3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132

Sample Output

2
13195
13

题意就是求(A1B1+A2B2+ ... +AHBH)mod M.

原来求一个数A的B次幂都是一级一级循环,时间复杂度是O(n),且最后取余M的话很容易溢出。

快速幂:比方说求2的9次幂,它的思想是求2的4次幂*2的4次幂*2,这样2的4次幂只需求一次。2的4次幂怎么求,还是和原来一样,是2的2次幂*2的2次幂,2的2次幂等于2*2;

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; long long getresult(long long m,long long n,long long k)
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m) % k;
n = n >> 1;
m = (m*m) % k;
}
return b;
}
int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout); long long Test,i,n,k,temp1,temp2,result;
cin>>Test; while(Test--)
{
result = 0; cin >> k >> n;
for (i = 1; i <= n; i++)
{
cin >> temp1 >> temp2;
result += getresult(temp1, temp2, k);
result = result%k;
}
cout << (result%k) << endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1995:Raising Modulo Numbers 快速幂的更多相关文章

  1. POJ 1995 Raising Modulo Numbers (快速幂)

    题意: 思路: 对于每个幂次方,将幂指数的二进制形式表示,从右到左移位,每次底数自乘,循环内每步取模. #include <cstdio> typedef long long LL; LL ...

  2. poj 1995 Raising Modulo Numbers【快速幂】

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5477   Accepted: ...

  3. POJ1995 Raising Modulo Numbers(快速幂)

    POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...

  4. poj 1995 Raising Modulo Numbers 题解

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. POJ 1995 Raising Modulo Numbers(快速幂)

    嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...

  7. POJ 1995 Raising Modulo Numbers

    快速幂取模 #include<cstdio> int mod_exp(int a, int b, int c) { int res, t; res = % c; t = a % c; wh ...

  8. ZOJ2150 Raising Modulo Numbers 快速幂

    ZOJ2150 快速幂,但是用递归式的好像会栈溢出. #include<cstdio> #include<cstdlib> #include<iostream> # ...

  9. POJ1995:Raising Modulo Numbers(快速幂取余)

    题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> ...

随机推荐

  1. 使用JS写一个计算器

    先上效果图: 简单的加减乘除功能还是有的,所以我们就考虑怎么来实现这个功能. 根据预期效果,可以确定页面中的布局要用到table tr td. 所以先放上页面布局,table的边框宽度border,c ...

  2. R box-cox变换 《回归分析与线性统计模型》page100

    > rm(list = ls()) > library(openxlsx) > electric= read.xlsx("data101.xlsx",sheet ...

  3. 07.swoole学习笔记--tcp客户端

    <?php //创建tcp客户端 $client=new swoole_client(SWOOLE_SOCK_TCP); //连接服务器 $client->connect(,) or di ...

  4. Python爬虫一爬取B站小视频源码

    如果要爬取多页的话 在最下方循环中 填写好循环的次数就可以了 项目源码 from fake_useragent import UserAgent import requests import time ...

  5. 015.Oracle数据库,取本月月初,取本月月末

    /*取本月月初,取本月月末*/ SELECT trunc( SYSDATE, 'mm' ) AS 月初 , last_day(trunc(sysdate)) AS 月末 FROM dual; 修改如下 ...

  6. Educational Codeforces Round 64 选做

    感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...

  7. H5页面,华为手机打开不加载JS的问题

    今天在做H5页面放在其他手机上面都可以刷出列表,但是就是放在华为手机上面刷不出来,怎么想都想不通,后面主管说华为手机的浏览器是严格遵守H5什么鬼东西的,然后其他浏览器做到比较好的,如果有报错就帮我们解 ...

  8. (五)微信小程序的跳转

    我们在微信页面往往有点击一个图片就可以跳转的情况,接下来我们就学习一下这个功能 一  js版本--bindtap 实现跳转 1. 首先我们先写一个跳转的按钮(在index.wxml) <view ...

  9. Json实体类驼峰名称转化器

    背景 我们常用一些网站,将json转化成实体类.但不巧的是,这些自动生成的都是小驼峰.需要进一步的改成大驼峰+JsonProperty.接着同事说他已经有个工具了.我稍微简化了一下 方法 首先行分离. ...

  10. centos7安装配置supervisor守护进程

    yum install Supervisor supervisord -c /etc/supervisord.conf 进入 cd /etc 目录 找到supervisord.conf 配置文件 和 ...