十万同时在线用户,需要多少内存?——Newbe.Claptrap 框架水平扩展实验
Newbe.Claptrap 项目是笔者正在构建以反应式、Actor模式和事件溯源为理论基础的一套服务端开发框架。本篇我们将来了解一下框架在水平扩展方面的能力。

前情提要
时隔许久,今日我们再次见面。首先介绍一下过往的项目情况:
第一次接触本框架的读者,可以先点击此处阅读本框架相关的基础理论和工作原理。
日前,我们也编写了一些预热文章和工具,读者可以通过以下链接进行了解:
今日主题
今天,我们来做一套实验预演,来验证 Newbe.Claptrap 框架,如何通过水平扩展的形式来适应逐渐增长的同时在线用户数。
由于此次实验涉及的内容很多,因此笔者将内容进行了归类,读者可以按照自己的兴趣阅读相关的章节:
业务需求说明
先看看今天要实现的业务场景:
- 用户通过 API 登录后生成一个 JWT token
- 用户调用 API 时验证 JWT token 的有效性
- 没有使用常规的 JWS 公私钥方式进行 JWT token 颁发,而是为每个用户单独使用 secret 进行哈希验证
- 验证看不同的在线用户需要消耗的内存情况
- 用户登录到生成 token 所消耗时间不得超过 200 ms
- tokn 的验证耗时不得超过 10 ms
吹牛先打草稿
笔者没有搜索到于 “在线用户数” 直接相关的理论定义,因此,为了避免各位的理解存在差异。笔者先按照自己的理解来点明:在线用户数到底意味着什么样的技术要求?
未在线用户若上线,不应该受到已在线用户数的影响
如果一个用户登录上线需要消耗 100 ms。那么不论当前在线的用户数是十人还是百万人。这个登录上线所消耗的时间都不会明显的超过 100 ms。
当然,有限的物理硬件肯定会使得,当在线用户数超过一个阈值(例如两百万)时,新用户登录上线会变慢甚至出错。
但是,增加物理机器就能提高这个阈值,我们就可以认为水平扩展设计是成功的。
对于任意一个已在线用户,得到的系统性能反馈应当相同
例如已在线的用户查询自己的订单详情,需要消耗 100 ms。那么当前任何一个用户进行订单查询的平均消耗都应该稳定在 100 ms。
当然,这里需要排除类似于 “抢购” 这种高集中性能问题。此处主要还是讨论日常稳定的容量增加。(我们以后会另外讨论 “抢购” 这种问题)
具体一点可以这样理解。假设我们做的是一个云笔记产品。
那么,如果增加物理机器就能增加同时使用云笔记产品的用户数,而且不牺牲任何一个用户的性能体验,我们就认为水平扩展设计是成功的。
在此次的实验中,若用户已经登录,则验证 JWT 有效性的时长大约为 0.5 ms。
调用时序关系

简要说明:
- 客户端发起登录请求将会逐层传达到 UserGrain 中
- UserGrain 将会在内部激活一个 Claptrap 来进行维持 UserGrain 中的状态数据。包括用户名、密码和用于 JWT 签名的 Secret。
- 随后的生成 JWT 生成和验证都将直接使用 UserGrain 中的数据。由于 UserGrain 中的数据是在一段时间内是 “缓存” 在内存中的。所以之后的 JWT 生成和验证将非常快速。实测约为 0.5 ms。
物理结构设计

如上图所示,便是此次进行测试的物理组件:
| 名称 | 说明 |
|---|---|
| WebAPI | 公开给外部调用 WebAPI 接口。提供登录和验证 token 的接口。 |
| Orleans Cluster | 托管 Grain 的核心进程. |
| Orleans Gateway | 于 Orleans Cluster 基本相同,但是 WebAPI 只能与 Gateway 进行通信 |
| Orleans Dashboard | 于 Orleans Gateway 基本相同,但增加了 Dashboard 的展示,以查看整个 Orleans 集群的情况 |
| Consul | 用于 Orleans 集群的集群发现和维护 |
| Claptrap DB | 用于保存 Newbe.Claptrap 框架的事件和状态数据 |
| Influx DB & Grafana | 用于监控 Newbe.Claptrap 相关的性能指标数据 |
此次实验的 Orleans 集群节点的数量实际上是 Cluster + Gateway + Dashboard 的总数。以上的划分实际上是由于功能设定的不同而进行的区分。
此次测试 “水平扩展” 特性的物理节点主要是 Orleans Cluster 和 Orleans Gateway 两个部分。将会分别测试以下这些情况的内存使用情况。
| Orleans Dashboard | Orleans Gateway | Orleans Cluster |
|---|---|---|
| 1 | 0 | 0 |
| 1 | 1 | 1 |
| 1 | 3 | 5 |
此次实验采用的是 Windows Docker Desktop 结合 WSL 2 进行的部署测试。
以上的物理结构实际上是按照最为此次实验最为复杂的情况设计的。实际上,如果业务场景足够简单,该物理结构可以进行裁剪。详细可以查看下文 “常见问题解答” 中的说明。
实际测试数据
以下,分别对不同的集群规模和用户数量进行测试
0 Gateway 0 Cluster
默认情况下,刚刚启动 Dashboard 节点时,通过 portainer 可以查看 container 占用的内存约为 200 MB 左右,如下图所示:

通过测试控制台,向 WebAPI 发出 30,000 次请求。每批 100 个请求,分批发送。
经过约两分钟的等待后,再次查看内存情况,约为 9.2 GB,如下图所示:

因此,我们简单的估算每个在线用户需要消耗的内存情况约为 (9.2*1024-200)/30000 = 0.3 MB。
另外,可以查看一些辅助数据:
CPU 使用情况

网络吞吐量

Orleans Dashboard 情况。左上角的 TOTAL ACTIVATIONS 中 30,000 即表示当前内存中存在的 UserGrain 数量,另外的 3 个为 Dashboard 使用的 Grain。

Grafana 中查看 Newbe.Claptrap 的事件平均处理时长约为 100-600 ms。此次测试的主要是内存情况,处理时长的采集时间为 30s 一次,因此样本数并不多。关于处理时长我们将在后续的文章中进行详细测试。

Grafana 中查看 Newbe.Claptrap 的事件的保存花费的平均时长约为 50-200 ms。事件的保存时长是事件处理的主要部分。

Grafana 中查看 Newbe.Claptrap 的事件已处理总数。一种登录了三万次,因此事件总数也是三万。

1 Gateway 1 Cluster
接下来,我们测试额外增加两个节点进行测试。
还是再提一下,Orleans 集群节点的数量实际上是 Cluster + Gateway + Dashboard 的总数。因此,对比上一个测试,该测试的节点数为 3。
测试得到的内存使用情况如下:
| 用户数 | 节点平均内存 | 内存总占用 |
|---|---|---|
| 10000 | 1.8 GB | 1.8*3 = 5.4 GB |
| 20000 | 3.3 GB | 3.3*3 = 9.9 GB |
| 30000 | 4.9 GB | 4.9*3 = 14.7 GB |
那么,以三万用户为例,平均每个用户占用的内存约为 (14.7*1024-200*3)/30000 = 0.48 MB
为什么节点数增加了,平均消耗内存上升了呢?笔者推测,没有进行过验证:节点增加,实际上节点之间的通讯还需要消耗额外的内存,因此平均来说有所增加。
3 Gateway 5 Cluster
我们再次增加节点。总结点数为 1 (dashboard) + 3 (cluster) + 5 (gateway) = 9 节点
测试得到的内存使用情况如下:
| 用户数 | 节点平均内存 | 内存总占用 |
|---|---|---|
| 20000 | 1.6 GB | 3.3*9 = 14.4 GB |
| 30000 | 2 GB | 4.9*9 = 18 GB |
那么,以三万用户为例,平均每个用户占用的内存约为 (18*1024-200*9)/30000 = 0.55 MB
十万用户究竟要多少内存?
以上所有的测试都是以三万为用户数进行的测试,这是一个特殊的数字。因为继续增加用户数的话,内存将会超出测试机的内存余量。(求赞助两条 16G)
如果继续增加用户数,将会开始使用操作系统的虚拟内存。虽然可以运行,但是运行效率会降低。原来登录可能只需要 100 ms。使用到虚拟内存的用户则需要 2 s。
因此,速度降低的情况下,在验证需要多少内存意义可能不大。
但是,这不意味着不能够继续登录,以下便是 1+1+1 的情况下,十万用户全部登录后的情况。(有十万用户同时在线,加点内存吧,不差钱了。)

源码构建说明
此次测试的代码均可以在文末的样例代码库中找到。为了方便读者自行实验,主要采用的是 docker-compose 进行构建和部署。
因此对于测试机的唯一环境需求就是要正确的安装好 Docker Desktop 。
可以从以下任一地址获取最新的样例代码:
快速启动
使用控制台进入 src/Newbe.Claptrap.Auth/LocalCluster 文件夹。运行以下命令便可以在本地启动所有的组件:
1 |
docker-compose up -d |
途中需要拉取一些托管于 Dockerhub 上的公共镜像,请确保本地已经正确配置了相关的加速器,以便您可以快速构建。可以参看这篇文档进行设置
成功启动之后可以通过 docker ps 查看到所有的组件。
1 |
PS>docker ps |
启动完成之后,便可以通过以下链接来查看相关的界面
| 地址 | 说明 |
|---|---|
| http://localhost:19000 | Orleans Dashboard 查看 Orleans 集群中各节点的状态 |
| http://localhost:10080 | Web API 基地址,此次使用所测试的 API 基地址 |
| http://localhost:23000 | Grafana 地址,查看 Newbe.Claptrap 相关的性能指标情况 |
源码构建
使用控制台进入 src/Newbe.Claptrap.Auth 文件夹。运行以下命令便可以在本地完成代码的构建:
1 |
./LocalCluster/pullimage.cmd |
pullimage.cmd 使用了笔者编写的 docker-mcr 加速器功能。您可以通过该文档来了解其工作原理
等待构建完毕之后,本地便生成好了相关的镜像。接下来便可以初次尝试在本地启动应用:
使用控制台进入 src/Newbe.Claptrap.Auth/LocalCluster 文件夹。运行以下命令便可以启动相关的容器:
1 |
docker-compose up -d |
常见问题解答
文中为何没有说明代码和配置的细节?
本文主要为读者展示该方案的实验可行性,具体应该如何应用 Newbe.Claptrap 框架编写代码,并非本文的主旨,因此没有提及。
当然,另外一点就是目前框架没有最终定版,所有内容都有可能发生变化,讲解代码细节意义不大。
但可以提前说明的是:编写非常简单,由于本样例的业务需求非常简单,因此代码内容也不多。全部都可以在示例仓库中找到。
用 Redis 存储 Token 也可以实现上面的需求,为什么要选择这个框架?
目前来说,笔者没有十足的理由说服读者必须使用哪种方案,此处也只是提供一种可行方案,至于实际应该选择哪种方案,应该有读者自己来考量,毕竟工具是否趁手还是需要试试才知道。
如果是最多 100 个在线用户,那怎么裁剪系统?
必要的组件只有 Orleans Dashboard 、 WebAPI 和 Claptrap Db。其他的组件全部都是非必要的。而且如果修改代码, Orleans Dashboard 和 WebAPI 是可以合并的。
所以最小规模就是一个进程加一个数据库。
Grafana 为什么没有报表?
Grafana 首次启动之后需要手动的创建 DataSource 和导入 Dashboard.
本实验相关的参数如下:
DataSource
- URL: http://influxdb:8086
- Database: metricsdatabase
- User: claptrap
- Password: claptrap
测试机的物理配置是什么?
没有专门腾内存,未开始测试前已占用 16GB 内存。以下是测试机的身材数据(洋垃圾,3500 元左右):
处理器 英特尔 Xeon (至强) E5-2678 v3 @ 2.50GHz 12 核 24 线程
主板 HUANANZHI X99-AD3 GAMING (Wellsburg)
显卡 Nvidia GeForce GTX 750 Ti (2 GB / Nvidia)
内存 32 GB (三星 DDR3L 1600MHz) 2013 年产 高龄内存
主硬盘 金士顿 SA400S37240G (240 GB / 固态硬盘)
如果您有更好的物理配置,相信可以得出更加优秀的数据。
即使是 0.3 MB 平均每用户的占用的我也觉得太高了
框架还在优化。未来会更好。
最后但是最重要!
最近作者正在构建以反应式、Actor模式和事件溯源为理论基础的一套服务端开发框架。希望为开发者提供能够便于开发出 “分布式”、“可水平扩展”、“可测试性高” 的应用系统 ——Newbe.Claptrap
本篇文章是该框架的一篇技术选文,属于技术构成的一部分。如果读者对该内容感兴趣,欢迎转发、评论、收藏文章以及项目。您的支持是促进项目成功的关键。
GitHub 项目地址:https://github.com/newbe36524/Newbe.Claptrap
Gitee 项目地址:https://gitee.com/yks/Newbe.Claptrap
如果你对该项目感兴趣,你可以通过 github issues 提交您的看法。
如果您无法正常访问 github issue,您也可以发送邮件到 newbe-claptrap@googlegroups.com 来参与我们的讨论。
点击链接 QQ 交流【Newbe.Claptrap】:https://jq.qq.com/?_wv=1027&k=5uJGXf5。
- 本文作者: newbe36524
- 本文链接: https://www.newbe.pro/Newbe.Claptrap/How-Many-RAMs-In-Used-While-There-Are-One-Hundred-Thousand-Users-Online/
- 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
十万同时在线用户,需要多少内存?——Newbe.Claptrap 框架水平扩展实验的更多相关文章
- Newbe.Claptrap 框架入门,第一步 —— 创建项目,实现简易购物车
让我们来实现一个简单的 “电商购物车” 需求来了解一下如何使用 Newbe.Claptrap 进行开发. 业务需求 实现一个简单的 “电商购物车” 需求,这里实现几个简单的业务: 获取当前购物车中的商 ...
- Newbe.Claptrap 框架中为什么用 Claptrap 和 Minion 两个词?
Newbe.Claptrap 框架中为什么用 Claptrap 和 Minion 两个词?最近整理了一下项目的术语表.今天就谈谈为什么起了 Claptrap 和 Minion 两个名字. Claptr ...
- Newbe.Claptrap 框架入门,第二步 —— 简单业务,清空购物车
接上一篇 Newbe.Claptrap 框架入门,第一步 —— 创建项目,实现简易购物车 ,我们继续要了解一下如何使用 Newbe.Claptrap 框架开发业务.通过本篇阅读,您便可以开始尝试使用 ...
- 轻松应对并发问题,简易的火车票售票系统,Newbe.Claptrap 框架用例,第一步 —— 业务分析
Newbe.Claptrap 框架非常适合于解决具有并发问题的业务系统.火车票售票系统,就是一个非常典型的场景用例. 本系列我们将逐步从业务.代码.测试和部署多方面来介绍,如何使用 Newbe.Cla ...
- 轻松应对并发问题,Newbe.Claptrap 框架中 State 和 Event 应该如何理解?
Newbe.Claptrap 框架中 State 和 Event 应该如何理解?最近整理了一下项目的术语表.今天就谈谈什么是 Event 和 State. Newbe.Claptrap 是一个用于轻松 ...
- Newbe.Claptrap 框架如何实现多级生命周期控制?
Newbe.Claptrap 框架如何实现多级生命周期控制?最近整理了一下项目的术语表.今天就谈谈什么是 Claptrap Lifetime Scope. 特别感谢 kotone 为本文提供的校对建议 ...
- Newbe.Claptrap 框架如何实现 Claptrap 的多样性?
Newbe.Claptrap 框架如何实现 Claptrap 的多样性?最近整理了一下项目的术语表.今天就谈谈什么是 Claptrap Design 和 Claptrap Factory. 特别感谢 ...
- Newbe.Claptrap 框架如何实现在多种框架之上运行?
Newbe.Claptrap 框架如何实现在多种框架之上运行?最近整理了一下项目的术语表.今天就谈谈什么是 Claptrap Box. 特别感谢 kotone 为本文提供的校对建议! Newbe.Cl ...
- Newbe.Claptrap 框架入门,第三步 —— 定义 Claptrap,管理商品库存
接上一篇 Newbe.Claptrap 框架入门,第二步 —— 简单业务,清空购物车 ,我们继续要了解一下如何使用 Newbe.Claptrap 框架开发业务.通过本篇阅读,您便可以开始学会添加一个全 ...
随机推荐
- Linux显示行号设置
linux显示行号设置 第一步,打开vim vi ~/.vimrc 第二步,在该文件中加入一行,命令如下: set nu # 显示行号 set nonu # 不显示行号 微信公众号:喵哥解说 公众号介 ...
- Java找零钱算法
买东西过程中,卖家经常需要找零钱.现用代码实现找零钱的方法,要求优先使用面额大的纸币,假设卖家有足够数量的各种面额的纸币. 下面给出的算法比较简单,也符合人的直觉:把找零不断地减掉小于它的最大面额的纸 ...
- C#线程 并行线程
第五部分 并行线程 在本节中,我们将介绍Framework 4.0新增的利用多核处理器的多线程API: 并行LINQ或PLINQ Parallel 类 任务并行性构造 并发集合 自旋锁和自旋等待 ...
- 04 . Mysql主从复制和读写分离
Mysql AB复制 AB复制又称之为主从复制,用于实现数据同步,实现Mysql的AB复制时,数据库的版本尽量保持一致,如果不能保持一致,最起码从服务器的版本要高于主服务器,但是就无法实现双向复制 ...
- Keycloak快速上手指南,只需10分钟即可接入Spring Boot/Vue前后端分离应用实现SSO单点登录
登录及身份认证是现代web应用最基本的功能之一,对于企业内部的系统,多个系统往往希望有一套SSO服务对企业用户的登录及身份认证进行统一的管理,提升用户同时使用多个系统的体验,Keycloak正是为此种 ...
- js函数中的this关键字
关于这个this关键字,也是很多项目中常常被用到的,那么,有人也许会问,干嘛要用this呢,在函数被调用时,直接指明是什么对象在调用不就行了?还整那么个模模糊糊的概念出来干嘛?不过嘛,存在即真理,既然 ...
- Spring Cloud 系列之 Apollo 配置中心(二)
本篇文章为系列文章,未读第一集的同学请猛戳这里:Spring Cloud 系列之 Apollo 配置中心(一) 本篇文章讲解 Apollo 部门管理.用户管理.配置管理.集群管理. 点击链接观看:Ap ...
- 重装ArchLinux后修改GRUB配置不生效问题的解决
重装ArchLinux后修改GRUB配置不生效问题的解决 mount指令看一下挂载,或者vim /etc/fstab看一下有没有/boot,看看fstab是不是没写进去.... 我特喵昨天重装完Arc ...
- Java实现 LeetCode 781 森林中的兔子(分析题)
781. 森林中的兔子 森林中,每个兔子都有颜色.其中一些兔子(可能是全部)告诉你还有多少其他的兔子和自己有相同的颜色.我们将这些回答放在 answers 数组里. 返回森林中兔子的最少数量. 示例: ...
- Java实现 LeetCode 309 最佳买卖股票时机含冷冻期
309. 最佳买卖股票时机含冷冻期 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 . 设计一个算法计算出最大利润.在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股 ...