1.Mean normalization(均值归一化)

我们可以将均值归一化理解为特征缩放的另一种方法。

特征缩放和均值归一化的作用都是为了减小样本数据的波动使得梯度下降能够更快速的寻找到一条‘捷径’,从而到达全局最小值。因此,均值归一化则是先求得所有样本的均值u

从而通过如下两个例子公式或者其他公式:

\[\large x=\frac{value - u}{max}
\]

\[\large x=\frac{value - u}{max-min}
\]

使得样本数据在更小的范围内变化同样明显。在分母中,我们可以使用样本的max或者max-min,根据自身需求,选择最合适的归一化方法。

reference

https://www.jianshu.com/p/ef3534ddda15

两种归一化方法对比

https://www.cnblogs.com/wangqiang9/p/9285594.html

week2编程作业

reference

别人的代码

https://github.com/xiaovictor/Coursera-ML-using-matlab-python

别人的笔记

https://www.cnblogs.com/wangxin37/p/8297859.html

吴恩达机器学习week2的更多相关文章

  1. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  2. coursera-斯坦福-机器学习-吴恩达-笔记week2

    1 多元线性回归 1.1 假设函数 多元线性回归是指有多个特征特征变量的情况.此时我们修改假设函数hθ(x)=θ0+θ1∗x为hθ(x)=θ0+θ1x1+θ2x2+⋯+θnxn.设x0=1,x为特征向 ...

  3. Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记

    Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...

  4. Coursera-AndrewNg(吴恩达)机器学习笔记——第三周

    一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...

  5. Coursera-AndrewNg(吴恩达)机器学习笔记——第一周

    一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T an ...

  6. 吴恩达机器学习笔记52-异常检测的问题动机与高斯分布(Problem Motivation of Anomaly Detection& Gaussian Distribution)

    一.问题动机 异常检测(Anomaly detection)问题是机器学习算法的一个常见应用.这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题. 给 ...

  7. 吴恩达机器学习笔记39-误差分析与类偏斜的误差度量(Error Analysis and Error Metrics for Skewed Classes)

    如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统,拥有多么复杂的变量:而是构建一个简单的算法,这样你可以很快地实现它. 构建一个学习算法的推荐方法为:1 ...

  8. 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)

    到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...

  9. 吴恩达机器学习笔记7-梯度下降III(Gradient descent intuition) --梯度下降的线性回归

    梯度下降算法和线性回归算法比较如图: 对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即: 我们刚刚使用的算法,有时也称为批量梯度下降.实际上,在机器学习中,通常不太会给算法起名字 ...

随机推荐

  1. 【Java】 语言基础习题汇总 [1] 基础概念到数组

    1 JDK JRE JVM 三种之间的关系,以及JDK JRE 包含的主要结构有哪些? JDK = JRE + 开发工具 javac.exe java.exe javadoc.exe等等 JRE = ...

  2. PDF阅读器

    1.SumatraPDF 非常小巧,打开很轻快 2.PDF Reader by Xodo window商店中可以找到,很好用 3. PDFXChange Editor这是我迄今为止见过的最好的PDF编 ...

  3. stand up meeting 1/7/2016

    part 组员                今日工作              工作耗时/h 明日计划 工作耗时/h    UI 冯晓云 调研下滑条的存在问题,尝试替换方案     6 全面实行替换 ...

  4. Dae-Da-Lus小组idea集锦

    Dae-Da-Lus小组成员经过认真的思考,每一位同学都提出了自己对于Team Project的想法,暂时Mark在这里,以备查阅~ 曹士杰: 作为一个计算机专业的学生,我想我们应该是幸运的.计算机科 ...

  5. 重磅!阿里发布《Java开发手册(泰山版)》

    最近,阿里的<Java开发手册>又更新了,这个版本历经一年的修炼,取名:<Java开发手册(泰山版)>正式出道. 正所谓无规矩不成方圆,在程序员的世界里,也存在很多规范,阿里出 ...

  6. form表单里的button调用js函数

    近来发现一个特别奇怪的问题:在form表单里,button的onclick事件无法调用js函数.代码如下(这段代码放在form标签里): dropUpdateAddress调用的js函数为: 这个时候 ...

  7. 常见分布式全局唯一ID生成策略

    全局唯一的 ID 几乎是所有系统都会遇到的刚需.这个 id 在搜索, 存储数据, 加快检索速度 等等很多方面都有着重要的意义.工业上有多种策略来获取这个全局唯一的id,针对常见的几种场景,我在这里进行 ...

  8. 图解Python的垃圾回收机制

    Python的GC模块主要运用了“引用计数”(reference counting)来跟踪和回收垃圾.在引用计数的基础上,还可以通过“标记-清除”(mark and sweep)解决容器对象可能产生的 ...

  9. What does __GNUC__ mean?

    It indicates that I'm a GNU compiler and you can use GNU extensions. https://stackoverflow.com/quest ...

  10. [Qt] QString 常用函数

    1. append(), prepend() 2. count(), size(), length() 这三个函数是相同的 3. trimmed() 去掉首尾空格 4. isNull() 对未赋值的字 ...