Planet Krypton is about to explode. The inhabitants of this planet have to leave the planet immediately. But the problem is that, still some decisions have to be made - where to go, how to go etc. So, the council of Krypton has invited some of the people to meet in a large hall.

There are n people in planet Krypton, for simplicity they are given ids from 1 to n. The council uses a super computer named Oracle to call them in the meeting. Oracle has four types of messages for invitation. The message format is type x y, where x and y are two different person's ids and type is an integer as follows:

1.      1 x y means that either x or y should be present in the meeting.

2.      2 x y means that if x is present, then no condition on y, but if x is absent y should be absent

3.      3 x y means that either x or y must be absent.

4.      4 x y means that either x or y must be present but not both.

Each member of the council has an opinion too. The message format is type x y z, where x, y and z are three different person's ids and type is an integer as follows:

1.      1 x y z means that at least one of x, y or z should be present

2.      2 x y z means that at least one of x, y or z should be absent

Now you have to find whether the members can be invited such that every message by oracle and the council members are satisfied.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a blank line. Next line contains three integers n, m and k (3 ≤ n ≤ 1000, 0 ≤ m ≤ 2000, 0 ≤ k ≤ 5) where m means the number of messages by oracle, k means the total members in the council. Each of the next m lines will contain a message of Oracle in the format given above. Each of the next k lines will contain a message of a council member. You can assume that all the ids given are correct.

Output

For each case, print the case number and whether it's possible to invite the people such that all the messages are satisfied. If it's not possible, then print'Impossible.' in a single line. Otherwise, print 'Possible' and the number of invited people and the ids of the invited people in ascending order. Print the line leaving a single space between fields. Terminate this line with a '.'. See the samples for more details. There can be multiple answers; print any valid one.

Sample Input

Output for Sample Input

3

3 2 1

3 2 1

1 2 3

1 1 2 3

4 4 1

2 2 1

4 1 2

4 1 3

4 1 4

2 2 3 4

4 5 0

3 1 2

2 2 3

2 2 4

2 1 2

2 2 1

Case 1: Possible 2 1 3.

Case 2: Impossible.

Case 3: Possible 0.

Note

This is a special judge problem; wrong output format may cause 'Wrong Answer'.

题目大意:

有一个机器产生m个限制,限制有4种:

1.  x or y 至少有1个人参加

2. x不参加 则 y必须不参加,(隐含 y参加 x必须参加)

3. x or y 至少有1个人不参加

4. x & y 同时参加 或者不参加

有 k 个人 进行投票,有2种类别

1. x y z 至少有一个人参加

2. x y z 至少有一个人不参加

有n 个人参加会议,m 个机器限制,k个人投票 (3 ≤ n ≤ 1000, 0 ≤ m ≤ 2000, 0 ≤ k ≤ 5)

解题思路:肯定是 2-sat,k比较小直接枚举3^k。剩下的就是一个模板。

建图:

二元关系直接建图,三元关系枚举成二元判断是否可行,不可行,继续枚举,可行输出答案,知道都枚举完,就无解。反正是一个NP完全问题,所以枚举无伤大雅。二元建图,看我博客2-SAT详解,一看就明白。戳死我

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define MAXN 2000+100
#define MAXM 10000+100
using namespace std;
struct Edge
{
int from, to, next;
};
Edge edge[MAXM], Redge[MAXM];
int head[MAXN], edgenum;
int Rhead[MAXN], Redgenum;//这些数组用于copy 这样就不用再次建已经确定的边了
struct Node
{
int op, x, y, z;
};
Node num[5];
int low[MAXN], dfn[MAXN];
int sccno[MAXN], scc_cnt;
int dfs_clock;
stack<int> S;
bool Instack[MAXN];
int N, M, K;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void input()
{
int x, y, z, op;
while(M--)
{
scanf("%d%d%d", &op, &x, &y);
if(op == 1)//x和y至少去一个
{
addEdge(y + N, x);//y不去x去
addEdge(x + N, y);//x不去y去
}
else if(op == 2)
{
addEdge(y, x);//注意 若y去则x是一定去的
addEdge(x + N, y + N);//x不去y也不去
}
else if(op == 3)//x和y至少一个不去
{
addEdge(x, y + N);//x去 y不去
addEdge(y, x + N);//y去 x不去
}
else//两个人只能去一个
{
addEdge(x, y + N);
addEdge(y, x + N);
addEdge(x + N, y);
addEdge(y + N, x);
}
} for(int i = 0; i < K; i++)
scanf("%d%d%d%d", &num[i].op, &num[i].x, &num[i].y, &num[i].z);
memcpy(Rhead, head, sizeof(head));
memcpy(Redge, edge, sizeof(edge));
Redgenum = edgenum;
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top(); S.pop();
Instack[v] = false;
sccno[v] = scc_cnt;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
int fp[MAXN];//建立SCC间的映射
bool two_sat()//判断当前情况是否成立
{
find_cut(1, 2*N);
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
return false;
else
{
fp[sccno[i]] = sccno[i+N];
fp[sccno[i+N]] = sccno[i];
}
}
return true;
}
int k = 1;
vector<int> G[MAXN];//缩点后新图
int in[MAXN];//记录SCC入度
void suodian()//缩点
{
for(int i = 1; i <= scc_cnt; i++) G[i].clear(), in[i] = 0;
for(int i = 0; i < edgenum; i++)
{
int u = sccno[edge[i].from];
int v = sccno[edge[i].to];
if(u != v)
G[v].push_back(u), in[u]++;
}
}
int color[MAXN];//染色
void toposort()//拓扑染色
{
queue<int> Q;
memset(color, -1, sizeof(color));
for(int i = 1; i <= scc_cnt; i++) if(in[i] == 0) Q.push(i);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(color[u] == -1)
{
color[u] = 1;
color[fp[u]] = 0;
}
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(--in[v] == 0)
Q.push(v);
}
}
}
void solve()
{
int State = (int)pow(3, K);//总状态数
bool flag = false;
for(int S = 0; S < State; S++)//这里状态下标从1开始或从2开始 都不会影响 注意取值就行了
{
memcpy(head, Rhead, sizeof(Rhead));//还原数组
memcpy(edge, Redge, sizeof(Redge));
edgenum = Redgenum;
int T = S;
for(int i = 0; i < K; i++)//继续枚举状态建图
{
int s;
switch(T % 3)//需要仔细琢磨 这个过程
{
case 0: s = num[i].x; break;
case 1: s = num[i].y; break;
case 2: s = num[i].z; break;
}
T /= 3;
if(num[i].op == 1)
addEdge(s + N, s);//s一定去
else
addEdge(s, s + N);//s一定不去
}
if(two_sat())//成立
{
flag = true;
break;
}
}
printf("Case %d: ", k++);
if(!flag)
{
printf("Impossible.\n");
return ;
}
printf("Possible");
//输出可行解
suodian();
toposort();
int ans = 0;
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
ans++;
}
printf(" %d", ans);
for(int i = 1; i <= N; i++)
if(color[sccno[i]] == 1)
printf(" %d", i);
printf(".\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d%d", &N, &M, &K);
init();
input();
solve();
}
return 0;
}

图论--2-SAT--Ligthoj 1407 Explosion 三元关系枚举的更多相关文章

  1. BZOJ.3498.[PA2009]Cakes(三元环 枚举)

    题目链接 感觉我可能学的假的(复杂度没问题,但是常数巨大). 一个比较真的说明见这儿:https://czyhe.me/blog/algorithm/3-mem-ring/3-mem-ring/. \ ...

  2. ER 和 数据库关系模式

    http://lianghuanyue123.blog.163.com/blog/static/130423244201162011850600/ 我们眼下所接触的数据库基本上是关系数据库,关系数据库 ...

  3. 【WIP_S9】图论算法

    创建: 2018/06/01 图的概念 有向边 有向图 无向边 无向图 点的次数: 点连接的边的数量 闭路: 起点和重点一样 连接图: 任意两点之间都可到达 无闭路有向图: 没有闭路的有向图 森林: ...

  4. 什么是关系图 (ERD)?

    首先,什么是实体关系图? 实体关系图,也称为ERD,ER图或ER模型,是一种用于数据库设计的结构图.一个ERD包含不同的符号和连接器,它们可视化两个重要信息:系统范围内的主要实体,以及这些实体之间的相 ...

  5. 我所学的c语言

    c语言结构 #include <stdio.h> int main(){    /* 我的第一个 C 程序 */    printf("Hello, World! \n" ...

  6. lecture4-神经网络在语言上的应用

    Hinton第四课 这一课主要介绍神经网络在语言处理上应用,而主要是在文本上,并附上了2003年Bengio 等人的19页的论文<A Neural Probabilistic Language ...

  7. QQ 腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件

    QQ 编辑 腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件.腾讯QQ支持在线聊天.视频通话.点对点断点续传文件.共享文件.网络硬盘.自定义面板.QQ邮箱等多种功 ...

  8. bzoj1109

    我们设f[i]为保留第i个木块最多的符合未知数 显然f[i]=max(f[j])+1 满足i>j a[i]>a[j] i-j>=a[i]-a[j] 我们把最后一个式子变成a[i]-i ...

  9. DBA词典:数据库设计常用词汇中英文对照表

    1. Access method(访问方法):此步骤包括从文件中存储和检索记录. 2. Alias(别名):某属性的另一个名字.在SQL中,可以用别名替换表名. 3. Alternate keys(备 ...

随机推荐

  1. 加密采矿僵尸网路病毒还在蔓延! kinsing kdevtmpfsi redis yarn docker

    Hadoop yarn 加密采矿僵尸网路病毒还在继续蔓延! 解决步骤 如果你同样遇到了kdevtmpfsi异常进程,占用了非常高的CPU和出网带宽,影响到了你的正常业务,建议使用以下步骤解决 杀掉异常 ...

  2. 深入理解智能指针之shared_ptr(一)

    本文基于C++标准库源码分析shared_ptr,旨在搞清楚shared_ptr是什么,线程安全性等,目标能够安全的使用智能指针. (一)shared_ptr是一个类. 首先可以确定的是shared_ ...

  3. mysql全文索引浅谈

    原文链接:http://www.cnblogs.com/robertsun/p/5999588.html 对于一些简单的检索可以通过mysql自带的全文索引及 MATCH AGAINST 查询语句实现 ...

  4. Dempster–Shafer theory(D-S证据理论)初探

    1. 证据理论的发展历程 Dempster在1967年的文献<多值映射导致的上下文概率>中提出上.下概率的概念,并在一系列关于上下概率的文献中进行了拓展和应用,其后又在文献<贝叶斯推 ...

  5. AJ学IOS(41)UI之核心动画 两行代码搞定3D转场

    AJ分享,必须精品 效果: 代码: 其实代码很少,苹果都给封装好了 // 1.创建核心动画 CATransition *ca = [CATransition animation]; // 1.1动画过 ...

  6. 如何从零开始学Python?会玩游戏就行,在玩的过程就能掌握编程

    现在学习编程的人很多,尤其是python编程,都列入高考了,而且因为人工智能时代的到来,编程也将是一门越来越重要的技能. 但是怎么从零开始学python比较好呢?其实,你会玩游戏就行. 从零基础开始教 ...

  7. (转) Windows Mobile和Windows CE的区别

    转发自 http://blog.sina.com.cn/s/blog_6250bbe60100tsf3.html WinCE Windows CE 是一个可定制的操作系统: Windows Mobil ...

  8. Qt发送一次信号触发两次槽函数的原因

    在手动为控件编写槽函数的时候,如果将槽函数名字按如下格式编辑,则不需要再次进行手动关联 void on_pushButton_1_clicked(); void on_radioButton_clic ...

  9. work of 1/4/2016

    part 组员                今日工作              工作耗时/h 明日计划 工作耗时/h    UI 冯晓云 修改UI增强显示鲁棒     6 完成UI页面切换部分    ...

  10. mysql datetime类型 按格式在页面输出

    mysql datetime类型对应java Date类型   java.util.Date类型会显示时间戳 java.sql.Date 只显示年月日不显示时分秒 只需要重写get方法 就能按格式输出 ...