Planet Krypton is about to explode. The inhabitants of this planet have to leave the planet immediately. But the problem is that, still some decisions have to be made - where to go, how to go etc. So, the council of Krypton has invited some of the people to meet in a large hall.

There are n people in planet Krypton, for simplicity they are given ids from 1 to n. The council uses a super computer named Oracle to call them in the meeting. Oracle has four types of messages for invitation. The message format is type x y, where x and y are two different person's ids and type is an integer as follows:

1.      1 x y means that either x or y should be present in the meeting.

2.      2 x y means that if x is present, then no condition on y, but if x is absent y should be absent

3.      3 x y means that either x or y must be absent.

4.      4 x y means that either x or y must be present but not both.

Each member of the council has an opinion too. The message format is type x y z, where x, y and z are three different person's ids and type is an integer as follows:

1.      1 x y z means that at least one of x, y or z should be present

2.      2 x y z means that at least one of x, y or z should be absent

Now you have to find whether the members can be invited such that every message by oracle and the council members are satisfied.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a blank line. Next line contains three integers n, m and k (3 ≤ n ≤ 1000, 0 ≤ m ≤ 2000, 0 ≤ k ≤ 5) where m means the number of messages by oracle, k means the total members in the council. Each of the next m lines will contain a message of Oracle in the format given above. Each of the next k lines will contain a message of a council member. You can assume that all the ids given are correct.

Output

For each case, print the case number and whether it's possible to invite the people such that all the messages are satisfied. If it's not possible, then print'Impossible.' in a single line. Otherwise, print 'Possible' and the number of invited people and the ids of the invited people in ascending order. Print the line leaving a single space between fields. Terminate this line with a '.'. See the samples for more details. There can be multiple answers; print any valid one.

Sample Input

Output for Sample Input

3

3 2 1

3 2 1

1 2 3

1 1 2 3

4 4 1

2 2 1

4 1 2

4 1 3

4 1 4

2 2 3 4

4 5 0

3 1 2

2 2 3

2 2 4

2 1 2

2 2 1

Case 1: Possible 2 1 3.

Case 2: Impossible.

Case 3: Possible 0.

Note

This is a special judge problem; wrong output format may cause 'Wrong Answer'.

题目大意:

有一个机器产生m个限制,限制有4种:

1.  x or y 至少有1个人参加

2. x不参加 则 y必须不参加,(隐含 y参加 x必须参加)

3. x or y 至少有1个人不参加

4. x & y 同时参加 或者不参加

有 k 个人 进行投票,有2种类别

1. x y z 至少有一个人参加

2. x y z 至少有一个人不参加

有n 个人参加会议,m 个机器限制,k个人投票 (3 ≤ n ≤ 1000, 0 ≤ m ≤ 2000, 0 ≤ k ≤ 5)

解题思路:肯定是 2-sat,k比较小直接枚举3^k。剩下的就是一个模板。

建图:

二元关系直接建图,三元关系枚举成二元判断是否可行,不可行,继续枚举,可行输出答案,知道都枚举完,就无解。反正是一个NP完全问题,所以枚举无伤大雅。二元建图,看我博客2-SAT详解,一看就明白。戳死我

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define MAXN 2000+100
#define MAXM 10000+100
using namespace std;
struct Edge
{
int from, to, next;
};
Edge edge[MAXM], Redge[MAXM];
int head[MAXN], edgenum;
int Rhead[MAXN], Redgenum;//这些数组用于copy 这样就不用再次建已经确定的边了
struct Node
{
int op, x, y, z;
};
Node num[5];
int low[MAXN], dfn[MAXN];
int sccno[MAXN], scc_cnt;
int dfs_clock;
stack<int> S;
bool Instack[MAXN];
int N, M, K;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void input()
{
int x, y, z, op;
while(M--)
{
scanf("%d%d%d", &op, &x, &y);
if(op == 1)//x和y至少去一个
{
addEdge(y + N, x);//y不去x去
addEdge(x + N, y);//x不去y去
}
else if(op == 2)
{
addEdge(y, x);//注意 若y去则x是一定去的
addEdge(x + N, y + N);//x不去y也不去
}
else if(op == 3)//x和y至少一个不去
{
addEdge(x, y + N);//x去 y不去
addEdge(y, x + N);//y去 x不去
}
else//两个人只能去一个
{
addEdge(x, y + N);
addEdge(y, x + N);
addEdge(x + N, y);
addEdge(y + N, x);
}
} for(int i = 0; i < K; i++)
scanf("%d%d%d%d", &num[i].op, &num[i].x, &num[i].y, &num[i].z);
memcpy(Rhead, head, sizeof(head));
memcpy(Redge, edge, sizeof(edge));
Redgenum = edgenum;
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top(); S.pop();
Instack[v] = false;
sccno[v] = scc_cnt;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
int fp[MAXN];//建立SCC间的映射
bool two_sat()//判断当前情况是否成立
{
find_cut(1, 2*N);
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
return false;
else
{
fp[sccno[i]] = sccno[i+N];
fp[sccno[i+N]] = sccno[i];
}
}
return true;
}
int k = 1;
vector<int> G[MAXN];//缩点后新图
int in[MAXN];//记录SCC入度
void suodian()//缩点
{
for(int i = 1; i <= scc_cnt; i++) G[i].clear(), in[i] = 0;
for(int i = 0; i < edgenum; i++)
{
int u = sccno[edge[i].from];
int v = sccno[edge[i].to];
if(u != v)
G[v].push_back(u), in[u]++;
}
}
int color[MAXN];//染色
void toposort()//拓扑染色
{
queue<int> Q;
memset(color, -1, sizeof(color));
for(int i = 1; i <= scc_cnt; i++) if(in[i] == 0) Q.push(i);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(color[u] == -1)
{
color[u] = 1;
color[fp[u]] = 0;
}
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(--in[v] == 0)
Q.push(v);
}
}
}
void solve()
{
int State = (int)pow(3, K);//总状态数
bool flag = false;
for(int S = 0; S < State; S++)//这里状态下标从1开始或从2开始 都不会影响 注意取值就行了
{
memcpy(head, Rhead, sizeof(Rhead));//还原数组
memcpy(edge, Redge, sizeof(Redge));
edgenum = Redgenum;
int T = S;
for(int i = 0; i < K; i++)//继续枚举状态建图
{
int s;
switch(T % 3)//需要仔细琢磨 这个过程
{
case 0: s = num[i].x; break;
case 1: s = num[i].y; break;
case 2: s = num[i].z; break;
}
T /= 3;
if(num[i].op == 1)
addEdge(s + N, s);//s一定去
else
addEdge(s, s + N);//s一定不去
}
if(two_sat())//成立
{
flag = true;
break;
}
}
printf("Case %d: ", k++);
if(!flag)
{
printf("Impossible.\n");
return ;
}
printf("Possible");
//输出可行解
suodian();
toposort();
int ans = 0;
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
ans++;
}
printf(" %d", ans);
for(int i = 1; i <= N; i++)
if(color[sccno[i]] == 1)
printf(" %d", i);
printf(".\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d%d", &N, &M, &K);
init();
input();
solve();
}
return 0;
}

图论--2-SAT--Ligthoj 1407 Explosion 三元关系枚举的更多相关文章

  1. BZOJ.3498.[PA2009]Cakes(三元环 枚举)

    题目链接 感觉我可能学的假的(复杂度没问题,但是常数巨大). 一个比较真的说明见这儿:https://czyhe.me/blog/algorithm/3-mem-ring/3-mem-ring/. \ ...

  2. ER 和 数据库关系模式

    http://lianghuanyue123.blog.163.com/blog/static/130423244201162011850600/ 我们眼下所接触的数据库基本上是关系数据库,关系数据库 ...

  3. 【WIP_S9】图论算法

    创建: 2018/06/01 图的概念 有向边 有向图 无向边 无向图 点的次数: 点连接的边的数量 闭路: 起点和重点一样 连接图: 任意两点之间都可到达 无闭路有向图: 没有闭路的有向图 森林: ...

  4. 什么是关系图 (ERD)?

    首先,什么是实体关系图? 实体关系图,也称为ERD,ER图或ER模型,是一种用于数据库设计的结构图.一个ERD包含不同的符号和连接器,它们可视化两个重要信息:系统范围内的主要实体,以及这些实体之间的相 ...

  5. 我所学的c语言

    c语言结构 #include <stdio.h> int main(){    /* 我的第一个 C 程序 */    printf("Hello, World! \n" ...

  6. lecture4-神经网络在语言上的应用

    Hinton第四课 这一课主要介绍神经网络在语言处理上应用,而主要是在文本上,并附上了2003年Bengio 等人的19页的论文<A Neural Probabilistic Language ...

  7. QQ 腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件

    QQ 编辑 腾讯QQ(简称“QQ”)是腾讯公司开发的一款基于Internet的即时通信(IM)软件.腾讯QQ支持在线聊天.视频通话.点对点断点续传文件.共享文件.网络硬盘.自定义面板.QQ邮箱等多种功 ...

  8. bzoj1109

    我们设f[i]为保留第i个木块最多的符合未知数 显然f[i]=max(f[j])+1 满足i>j a[i]>a[j] i-j>=a[i]-a[j] 我们把最后一个式子变成a[i]-i ...

  9. DBA词典:数据库设计常用词汇中英文对照表

    1. Access method(访问方法):此步骤包括从文件中存储和检索记录. 2. Alias(别名):某属性的另一个名字.在SQL中,可以用别名替换表名. 3. Alternate keys(备 ...

随机推荐

  1. django-rest-framework权限验证

    django-rest-framework权限验证 在项目根目录下新建utils的文件 新建permissions.py from rest_framework.permissions import ...

  2. docker-compose容器中redis权限问题

    遇到的问题:aof文件不断变大,导致服务器卡崩溃. 1.在服务器上拉取Bitnami/redis的镜像 2.出现aof权限不够问题,所以直接给aof文件加了权限,导致aof不断变大,最终服务器宕机. ...

  3. redis修改密码以及验证登录,启动服务常用命令

    1.通过配置文件,直接修改 2.启动然后使用密码验证登录 3.redis常用命令 启动服务:redis-server --service-start重启服务:service redis restart ...

  4. xftp连接centos7

    1.下载xftp文件,并正常进行安装 2.安装好之后运行,并新建会话,此时可见如下界面: 注意: 名称,可随便输入,自己能看懂是什么就行      主机,输入当前Linux服务器的ip(如何获取服务器 ...

  5. [安卓] 21、android studio 疑难杂症

    目录 1 gradle问题 1.1 gradle版本不匹配导致的错误: . 1 gradle问题 1.1 gradle版本不匹配导致的错误: 背景:在导入telink ble ota安卓源码时遇到an ...

  6. matlab将数据读取和写入txt文档

    原文链接 matlab中打开文件 fid = fopen(文件名,‘打开方式’): 说明:fid用于存储文件句柄值,如果fid>0,这说明文件打开成功. 另外,在这些字符串后添加一个“t”,如‘ ...

  7. Spring Boot 集成 Spring Security 入门案例教程

    前言 本文作为入门级的DEMO,完全按照官网实例演示: 项目目录结构 Maven 依赖 <parent> <groupId>org.springframework.boot&l ...

  8. L11注意力机制和Seq2seq模型

    注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量 ...

  9. Nightmare BFS

    Ignatius had a nightmare last night. He found himself in a labyrinth with a time bomb on him. The la ...

  10. java对象头信息和三种锁的性能对比

    java头的信息分析 首先为什么我要去研究java的对象头呢? 这里截取一张hotspot的源码当中的注释 这张图换成可读的表格如下 |-------------------------------- ...