题目:

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
 
 
题意:
给一个n*4的矩阵,输入n*4个数,在每一列找一个数,使得四个数的和为0;
 
分析:
先分别求出a和b,c和d两列任意两个数的和存放到相应的数组,将cd的和进行排序后,再用二分法进行查找;二分查找的时候注意,倘若中间的数据符合条件的话要再往两边进行查找,因为不能排除有多个数字相等的情况
 
注意:
求第二组数据的时候,根据提交的结果是不需要初始化total的;
 
 
AC代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int a[N],b[N],c[N],d[N];
int ab[N*N],cd[N*N];
int main()
{
int n,total=,i,j;
while (cin>>n)
{
for (i=;i<n;i++)
cin>>a[i]>>b[i]>>c[i]>>d[i];
int num1=,num2=;
for (i=;i<n;i++)
for (j=;j<n;j++)
{
ab[num1++]=a[i]+b[j];
cd[num2++]=-(c[i]+d[j]);
}
sort (cd,cd+num2);
for (i=;i<num1;i++)
{
int mid,up=num2-,low=;
while (low<=up)
{
mid=low+(up-low)/;
if (ab[i]==cd[mid])
{
total++;
for (j=mid+;j<=up;j++)
{ if (ab[i]==cd[j])
total++;
else
break;
}
for (j=mid-;j>=low;j--)
{
if (ab[i]==cd[j])
total++;
else
break;
} break;
}
else
{
if (ab[i]>cd[mid])
low=mid+;
else
up=mid-;
}
}
}
cout << total << endl;
} return ;
}

4 Values whose Sum is 0 (二分+排序)的更多相关文章

  1. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  2. 4 Values whose Sum is 0(二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 21370   Accep ...

  3. POJ 2785:4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 18221   Accep ...

  4. POJ - 2785 - 4 Values whose Sum is 0 - 二分折半查找

    2017-08-01 21:29:14 writer:pprp 参考:http://blog.csdn.net/piaocoder/article/details/45584763 算法分析:直接暴力 ...

  5. UVA - 1152 --- 4 Values whose Sum is 0(二分)

    问题分析 首先枚举a和b, 把所有a+b记录下来放在一个有序数组,然后枚举c和d, 在有序数组中查一查-c-d共有多少个.注意这里不可以直接用二分算法的那个模板,因为那个模板只能查找是否有某个数,一旦 ...

  6. POJ2785 4 Values whose Sum is 0 (二分)

    题意:给你四组长度为\(n\)序列,从每个序列中选一个数出来,使得四个数字之和等于\(0\),问由多少种组成情况(仅于元素的所在位置有关). 题解:\(n\)最大可以取4000,直接暴力肯定是不行的, ...

  7. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  8. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  9. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  10. 二分-G - 4 Values whose Sum is 0

    G - 4 Values whose Sum is 0 The SUM problem can be formulated as follows: given four lists A, B, C, ...

随机推荐

  1. ubuntu 编译VLC3.0.0

    参考链接 https://blog.csdn.net/u014755412/article/details/78874038 https://www.cnblogs.com/wpjamer/p/919 ...

  2. Java的各类型数据在内存中分配情况详解

    1.      有这样一种说法,如今争锋于IT战场的两大势力,MS一族偏重于底层实现,Java一族偏重于系统架构.说法根据无从考证,但从两大势力各自的社区力量和图书市场已有佳作不难看出,此说法不虚,但 ...

  3. Docker Compose文件详解 V2

    Compose file reference 语法: web:      build: ./web      ports:      - "5000:5000"      volu ...

  4. LeetCode——1305. 两棵二叉搜索树中的所有元素

    给你 root1 和 root2 这两棵二叉搜索树. 请你返回一个列表,其中包含 两棵树 中的所有整数并按 升序 排序.. 示例 1: 输入:root1 = [2,1,4], root2 = [1,0 ...

  5. 01 语言基础+高级:1-4 接口与多态_day10【接口、多态】&&day11【final、匿名内部类】

    day10[接口.多态] 接口三大特征——多态引用类型转换 教学目标写出定义接口的格式写出实现接口的格式说出接口中成员的特点能够说出使用多态的前提条件理解多态的向上转型理解多态的向下转型 day10_ ...

  6. react webpack配置

  7. Java之接口(java8的新特性)

    public class SubClassTest { public static void main(String[] args) { SubClass s = new SubClass(); // ...

  8. Codeforces 1292A/1293C - NEKO's Maze Game

    题目大意: 有一个2*n的图 NEKO#ΦωΦ要带领mimi们从(1,1)的点走到(2,n)的点 每次会操作一个点,从可以通过到不可以通过,不可以通过到可以通过 每操作一次要回答一次NEKO#ΦωΦ能 ...

  9. PAT甲级——1002 A+B for Polynomials

    PATA1002 A+B for Polynomials This time, you are supposed to find A+B where A and B are two polynomia ...

  10. 关于VLC无法播放rtsp的问题分析

    我之前有一篇博客说,怎么通过vlc查日志,方法不知道是不是特别好,传送门:https://www.cnblogs.com/132818Creator/p/11136714.html 虽然在调试窗口上提 ...