题目:

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
 
 
题意:
给一个n*4的矩阵,输入n*4个数,在每一列找一个数,使得四个数的和为0;
 
分析:
先分别求出a和b,c和d两列任意两个数的和存放到相应的数组,将cd的和进行排序后,再用二分法进行查找;二分查找的时候注意,倘若中间的数据符合条件的话要再往两边进行查找,因为不能排除有多个数字相等的情况
 
注意:
求第二组数据的时候,根据提交的结果是不需要初始化total的;
 
 
AC代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int a[N],b[N],c[N],d[N];
int ab[N*N],cd[N*N];
int main()
{
int n,total=,i,j;
while (cin>>n)
{
for (i=;i<n;i++)
cin>>a[i]>>b[i]>>c[i]>>d[i];
int num1=,num2=;
for (i=;i<n;i++)
for (j=;j<n;j++)
{
ab[num1++]=a[i]+b[j];
cd[num2++]=-(c[i]+d[j]);
}
sort (cd,cd+num2);
for (i=;i<num1;i++)
{
int mid,up=num2-,low=;
while (low<=up)
{
mid=low+(up-low)/;
if (ab[i]==cd[mid])
{
total++;
for (j=mid+;j<=up;j++)
{ if (ab[i]==cd[j])
total++;
else
break;
}
for (j=mid-;j>=low;j--)
{
if (ab[i]==cd[j])
total++;
else
break;
} break;
}
else
{
if (ab[i]>cd[mid])
low=mid+;
else
up=mid-;
}
}
}
cout << total << endl;
} return ;
}

4 Values whose Sum is 0 (二分+排序)的更多相关文章

  1. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  2. 4 Values whose Sum is 0(二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 21370   Accep ...

  3. POJ 2785:4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 18221   Accep ...

  4. POJ - 2785 - 4 Values whose Sum is 0 - 二分折半查找

    2017-08-01 21:29:14 writer:pprp 参考:http://blog.csdn.net/piaocoder/article/details/45584763 算法分析:直接暴力 ...

  5. UVA - 1152 --- 4 Values whose Sum is 0(二分)

    问题分析 首先枚举a和b, 把所有a+b记录下来放在一个有序数组,然后枚举c和d, 在有序数组中查一查-c-d共有多少个.注意这里不可以直接用二分算法的那个模板,因为那个模板只能查找是否有某个数,一旦 ...

  6. POJ2785 4 Values whose Sum is 0 (二分)

    题意:给你四组长度为\(n\)序列,从每个序列中选一个数出来,使得四个数字之和等于\(0\),问由多少种组成情况(仅于元素的所在位置有关). 题解:\(n\)最大可以取4000,直接暴力肯定是不行的, ...

  7. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  8. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  9. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  10. 二分-G - 4 Values whose Sum is 0

    G - 4 Values whose Sum is 0 The SUM problem can be formulated as follows: given four lists A, B, C, ...

随机推荐

  1. Linux-exec族函数

    1.为什么需要exec族函数 (1).fork子进程是为了执行新程序(fork创建子进程后,子进程和父进程同时被OS调度执行,因此子程序可以单独的执行一个程序,这样程序宏观上将会和父进程程序同时进行) ...

  2. 关于shopee平台接口(php)对接示例

    2018年8月之后,shopee开始使用新接口,需要进行授权操作 1.授权 public function getAuth(){ /** * @param ShopApiShopee $model * ...

  3. Java--平台版本、跨平台、JVM、JDK、JRE

    Java2平台版本 Java2平台包括标准版(J2SE).企业版(J2EE)和微缩版(J2ME)三个版本 J2SE 包含那些构成Java语言核心的类. J2EE 包含J2SE 中的类,并且还包含用于开 ...

  4. Ubuntu18.04 离线安装 docker

    Ubuntu18.04 离线安装 dockerhttps://blog.csdn.net/u012814856/article/details/804231851. 将下载下来的文件夹中的 4 个文件 ...

  5. Qt QPixmap QImage 图片等比例缩放到指定大小

    QPixmap pixmap(path); //pixmap=QPixmap::fromImage(imgShow); pixmap = pixmap.scaled(, , Qt::KeepAspec ...

  6. spring02-组件注册-@ComponentScan-自动扫描组件&指定扫描规则

    上一篇我们讲到,讲@Bean注解标在某个方法上,那么ioc容器启动的时候就会将方法返回值放到ioc容器中 在开发中,实际上包扫描用的比较多,接下来我们会介绍两种方式一种是基于xml,一种是基于注解. ...

  7. MySQL5.7源码安装

    一.获取MySQL5.7.20源码安装包,并上传至服务器   MySQL官网下载地址:https://dev.mysql.com/downloads/mysql/ 下载版本:mysql-boost-5 ...

  8. TPO1-3Timberline Vegetation on Mountains

    At the upper timberline the trees begin to become twisted and deformed. This is particularly true fo ...

  9. linux下nfs共享目录

    1. 关掉防火墙    systemctl disable firewalld.service 2. 关掉selinux    vim /etc/selinux/config    修改第七行:    ...

  10. 自定义字段从BOM带入生产用料清单

    自定义字段从BOM带入生产用料清单