B - TWO NODES
Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87326#problem/B

Description

Suppose that G is an undirected graph, and the value of stab is defined as follows: 

Among the expression,G -i, -j is the remainder after removing node i, node j and all edges that are directly relevant to the previous two nodes. cntCompent is the number of connected components of X independently. 
Thus, given a certain undirected graph G, you are supposed to calculating the value of stab.
 

Input

The input will contain the description of several graphs. For each graph, the description consist of an integer N for the number of nodes, an integer M for the number of edges, and M pairs of integers for edges (3<=N,M<=5000). 
Please note that the endpoints of edge is marked in the range of [0,N-1], and input cases ends with EOF.

Output

For each graph in the input, you should output the value of stab.

Sample Input

4 5
0 1
1 2
2 3
3 0
0 2

Sample Output

2

HINT

题意

一个图,让你删除两个点之后,连通块最多有多少个

题解

枚举第一个点,然后跑tarjan求割点就好了

代码:

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int N=;
int dfn[N],low[N],pre[N],to[N],nxt[N],vis[N],sum[N],cnt,tm,ans,tot,ret,aim,n,m; void makeedge(int a,int b)
{
to[cnt]=a;nxt[cnt]=pre[b];pre[b]=cnt++;
to[cnt]=b;nxt[cnt]=pre[a];pre[a]=cnt++;
return ;
} void dfs(int x,int fa)
{
dfn[x]=tm;
low[x]=tm++;
vis[x]=;
sum[x]=;
for(int p=pre[x];p!=-;p=nxt[p])
{
if(to[p]!=aim&&to[p]!=fa)
{
int y=to[p];
if(!vis[y])
{
vis[y]=;
dfs(y,x);
low[x]=min(low[y],low[x]);
if(low[y]>=dfn[x]) sum[x]++;
}
else
{
low[x]=min(low[x],dfn[y]);
}
}
}
if(x==fa) sum[x]--;
if(ans<sum[x]) ans=sum[x];
return ;
} void solve()
{
ans=-;tot=;
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++)
if(!vis[i]&&i!=aim)
{
tm=;
dfs(i,i);
tot++;
}
if(ret<ans+tot+) ret=ans+tot+;
// cout<<ans<<" "<<tot<<" "<<ans+tot+2<<endl;
return ;
} int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(pre,-,sizeof(pre));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(vis,,sizeof(vis));
memset(sum,,sizeof(sum));
cnt=;ans=;tot=;tm=;ret=;
for(int i=;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
a++,b++;
makeedge(a,b);
}
for(int i=;i<=n;i++)
{
aim=i;
solve();
}
printf("%d\n",ret-);
}
return ;
}

HDU 4587 B - TWO NODES tarjan的更多相关文章

  1. HDU 4587 TWO NODES 枚举+割点

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 TWO NODES Time Limit: 24000/12000 MS (Java/Other ...

  2. HDU 4587 TWO NODES(割两个点的最大连通分支数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 给一图,求割去两个点后所能形成的最大连通分支数. 思路: 对于这种情况,第一个只能枚举,然后在删除 ...

  3. HDU 4587 TWO NODES 割点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 删除两个点,使连通块的数目最大化 题解: 枚举删除第一个点,然后对删除了第一个点的图跑 ...

  4. HDU 4587 TWO NODES(割点)(2013 ACM-ICPC南京赛区全国邀请赛)

    Description Suppose that G is an undirected graph, and the value of stab is defined as follows: Amon ...

  5. HDU - 4587 TWO NODES (图的割点)

    Suppose that G is an undirected graph, and the value of stab is defined as follows: Among the expres ...

  6. hdu 4738 Caocao's Bridges (tarjan求桥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题目大意:给一些点,用一些边把这些点相连,每一条边上有一个权值.现在要你破坏任意一个边(要付出相 ...

  7. HDU 3969 Hawk-and-Chicken(dfs+tarjan缩点优化,网上最详细解析!!!)

    Hawk-and-Chicken Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  9. hdu 4587(割点的应用)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 思路:题目的意思很简单,就是删除任意2个节点以及关联的边,求图的最大连通分量数.我们知道删除割点 ...

随机推荐

  1. 【Unity3D】自动寻路(Nav Mesh Agent组件)

    1.首先添加场景模型 2.为场景模型(寻路路径)添加NavMesh渲染,操作:Windows->Navigation->勾选Navigation Static选项->不勾选Gener ...

  2. MVC ActionResult -- JavaScriptResult,JsonResult

    以下是ActionResult的继承图: 大概的分类: EmptyResult:表示不执行任何操作的结果 ContentResult :返回文本结果 JavaScriptResult:返回结果为Jav ...

  3. ajax请求总是不成功?浏览器的同源策略和跨域问题详解

    场景 码农小明要做一个展示业务数据的大屏给老板看,里面包含了来自自己网站的数据和来自隔壁老王的数据.那么自己网站的数据提供了 http://xiaoming.com/whoami 这样的数据接口隔壁老 ...

  4. Java Sleep() 与 Wait()的机制原理与区别

    一.概念.原理.区别    Java中的多线程是一种抢占式的机制而不是分时机制.线程主要有以下几种状态:可运行,运行,阻塞,死亡.抢占式机制指的是有多个线程处于可运行状态,但是只有一个线程在运行. 回 ...

  5. Ui篇--layout_weight体验(实现按比例显示)

    在android开发中LinearLayout很常用,LinearLayout的内控件的android:layout_weight在某些场景显得非常重要,比如我们需要按比例显示.android并没用提 ...

  6. 【LeetCode 201】Bitwise AND of Numbers Range

    Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...

  7. 跟我学机器视觉-HALCON学习例程中文详解-FUZZY检测用于开关引脚测量

    跟我学机器视觉-HALCON学习例程中文详解-FUZZY检测用于开关引脚测量 * This example program demonstrates the basic usage of a fuzz ...

  8. [Hive - LanguageManual ] Explain (待)

    EXPLAIN Syntax EXPLAIN Syntax Hive provides an EXPLAIN command that shows the execution plan for a q ...

  9. Hadoop-安装过程-单虚拟机版(伪分布式)(Ubuntu13.04版本下安装)

    由于新装的Ubutu默认情况下,系统只安装了SSH客户端,需要自行安装SSH服务端 如何确定是否安装了SSH服务端? 可以通过命令ssh localhost,结果如下,即未安装SSH服务端:   安装 ...

  10. linux 切换c++版本

    删除gcc-4.6的软连接文件/usr/bin/gcc.(只是删除软连接) 命令:sudo rm /usr/bin/gcc 然后建一个软连接,指向gcc-4.4. 命令:sudo ln -s /usr ...