Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: an hypothetical non-machine learning algorithm for face recognition in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but will "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

This particular example of face recognition is supervised, which means that your examples must belabeled, or explicitly say which ones are faces and which ones aren't.

In an unsupervised algorithm your examples are not labeled, i.e. you don't say anything. Of course in such a case the algorithm itself cannot "invent" what a face is, but it could be able to cluster the data in different class, e.g. it could be able to distinguish that faces are very different from panoramas, which are very different from horses.

Since another answer mention it (in an incorrect way), there are "intermediate" form of supervision, i.e.semi-supervised and active learning techniques. Technically, these are supervised methods, in which there is some "smart" way to avoid the large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a panorama and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised approach, there are two different algorithms, which start with the labeled examples, and then "tell" each other way they think about some large number of unlabeled data. From this "discussion" they learn.

What is the difference between supervised learning and unsupervised learning?的更多相关文章

  1. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  2. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  3. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  4. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  7. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  8. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  9. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

随机推荐

  1. Linux多线程编程(不限Linux)

    前言 线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步.互斥,这些东西将在本文中介绍.我在某QQ群里见到这样一道面试题: 是否熟 ...

  2. DNA RNA

    核糖体没有DNA,但是有RNA(rRNA 核糖体RNA) 有DNA的细胞器是线粒体和叶绿体.

  3. The Name/Origin of Country names

    1.Puerto Rico (Spanish for "Rich Port"/富裕的港口/富港 ) 2.HongKong(Chinese for "香港")

  4. c语言 char*类型作为中间变量将许多字符串保存到一个数组的问题

    char*是一个字符串指针,如下面的程序value_作为一个中间变量用来在for循环中scanf输入的值的接收者,然后将value_保存到array中,但是一下程序会出现一个问题就是当你跳出这个函数时 ...

  5. 好书推荐:《Game Programming Patterns》

    在线阅读点这里: http://gameprogrammingpatterns.com/contents.html 这是一个总结讨论和反思游戏客户端game play开发常用设计模式的书. 游戏开发和 ...

  6. 网站如何提高PR值

    做了站长这些年,积累些经验,记录下来,分享兄弟. 一.商城类型网站 对于商城型的网站站内优化来说,主要是用户咨询和浏览产品时产生的疑问.比如当某用户看到一些自己感兴趣的产品需要咨询的时候,自然就会寻找 ...

  7. linux命令行解析函数介绍

    函数原型:         int getopt(int argc,char * const argv[ ],const char * optstring);         给定了命令参数的数量 ( ...

  8. 值类型的Constructor

    使用C#的时候我们最熟悉的是类,也就是Reference Type,翻译成中文是引用类型.但是C#还有另外的一种类型往往被我们用的最多缺经常被忽视,这种类型就是值类型(Value Type). 值类型 ...

  9. LiteHttp:一款‘智能’的HTTP框架类库

    LiteHttp:一款‘智能’的HTTP框架类库(转自github) 简介 LiteHttp是一款简单.智能.灵活的HTTP框架库,它在请求和响应层面做到了全自动构建和解析,主要用于Android快速 ...

  10. JS判断鼠标从什么方向进入一个容器

    偶然将想到的一个如何判断鼠标从哪个方向进入一个容器的问题.首先想到的是给容器的四个边添加几个块,然后看鼠标进入的时候哪个块先监听到鼠标事件.不过这样麻烦太多了.google了一下找到了一个不错的解决方 ...