Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: an hypothetical non-machine learning algorithm for face recognition in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but will "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

This particular example of face recognition is supervised, which means that your examples must belabeled, or explicitly say which ones are faces and which ones aren't.

In an unsupervised algorithm your examples are not labeled, i.e. you don't say anything. Of course in such a case the algorithm itself cannot "invent" what a face is, but it could be able to cluster the data in different class, e.g. it could be able to distinguish that faces are very different from panoramas, which are very different from horses.

Since another answer mention it (in an incorrect way), there are "intermediate" form of supervision, i.e.semi-supervised and active learning techniques. Technically, these are supervised methods, in which there is some "smart" way to avoid the large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a panorama and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised approach, there are two different algorithms, which start with the labeled examples, and then "tell" each other way they think about some large number of unlabeled data. From this "discussion" they learn.

What is the difference between supervised learning and unsupervised learning?的更多相关文章

  1. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  2. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  3. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  4. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  7. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  8. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  9. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

随机推荐

  1. 8个WEB前端创意HTML5动画应用精选

    和十几年前相比,现在的网页加入了很多动画元素,从之前的Flash到现在的HTML5,动画样式越来越丰富,动画制作也越来越便捷.本文精选了几款非常富有创意的HTML5动画应用,欣赏一下吧. 1.HTML ...

  2. 配置PostgreSQL Streaming Replication集群

    运行环境: Primary: 192.168.0.11 Standby: 192.168.0.21, 192.168.0.22 OS: CentOS 6.2 PostgreSQL: 9.1.2 版本以 ...

  3. USB接口介绍

        USB设备系统分为两个部分,USB Host端和USB Device端,以USB接口的U盘为例子,U盘自身是一个USB Device,PC机的USB接口以及相关的控制电路为USB Host部分 ...

  4. Python单元测试——深入理解unittest (转)

    单元测试的重要性就不多说了,可恶的是Python中 有太多的单元测试框架和工具,什么unittest, testtools, subunit, coverage, testrepository, no ...

  5. 游戏对象的变换-Transform

    问题: 在给GameObject设置位置的时候,怎么保证设置的位置在摄像机的范围内?         主要看摄像机的深度轴和你的GameObject的深度轴,比如如果现在的平面是: Z–> Y, ...

  6. ant条件逻辑

    <condition property="sdk-folder" value="E:\android\android-sdk\adt-bundle-windows- ...

  7. ADO.NET笔记——使用通用数据访问

    相关知识: 前面所有示例,君是访问特定的数据库(SQL Server),因此注入SqlConnection.SqlCommand.SqlDataReader.SqlDataAdapter等类名都添加了 ...

  8. 主机win10与虚拟机ubuntu14.04通信

    主机是笔记本win10系统,在virtualbox虚拟机里面安装了ubuntu14.04系统,现在想让它们互联互通. 我的笔记本是通过路由器无线连接接入的互联网,设置了固定ip:192.168.0.4 ...

  9. ASP.Net网站部署失败

    部署站点时候,出现如下错误 “/”应用程序中的服务器错误. ---------------------------------------------------------------------- ...

  10. Reveal 配置与使用

    http://www.th7.cn/Program/IOS/201608/939231.shtml http://www.jianshu.com/p/abac941c2e8e 这个比较好.http:/ ...