[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?
Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- asp.net mvc Ajax.BeginForm不能异步刷新,或转到新页面,或页面还是刷新了,的原因(或解决办法)(转)
昨天搞了一下午的Ajax.BeginForm都没能实现异步刷新,一直将返回的数据提交到新的页面,在网上搜了n多方法都不行,问了n多人都没能搞定,今天大一早,就意外的被我发现了问题所在. 布局页: &l ...
- custom activities
Useful Sharepoint Designer Custom Workflow Activities http://spdactivities.codeplex.com/ http://stac ...
- 使用Compass制作雪碧图
遇见好的文章,笔者也会转载.但是正所谓好记性不如烂笔头,单纯的拿来主义也不如自己的亲自实践.所以每次需要转载的文章,我都会自己敲一遍,中间加入一些自己的思考. 这篇文章转载自:http://www.h ...
- Codeforces Round #346 (Div. 2) E - New Reform 无相图求环
题目链接: 题目 E. New Reform time limit per test 1 second memory limit per test 256 megabytes inputstandar ...
- rsync介绍
老套的搬用一下rsync的介绍,rsync是Linux系统下的数据镜像备份工具,从软件的命名上就可以看出来了——remote sync.rsync支持大多数的类Unix系统,无论是Linux.Sola ...
- linux 下安装redis以及php Redis扩展
[php] view plaincopy在CODE上查看代码片派生到我的代码片 linux 下安装redis以及php Redis扩展 环境配置: centos6. nginx/ php/ mysql ...
- Tornado,了解一下
多了解不一样的PYTHON框架,对深入了解DJANGO,总是有帮助的. import textwrap import tornado.httpserver import tornado.ioloop ...
- Stop-The-World
Stop-The-World –Java中一种全局暂停的现象 –全局停顿,所有Java代码停止,native代码可以执行,但不能和JVM交互 –多半由于GC引起 •Dump线程 •死锁检查 •堆Dum ...
- 先说一下JS的获取方法,其要比JQUERY的方法麻烦很多,后面以JQUERY的方法作对比。
先说一下JS的获取方法,其要比JQUERY的方法麻烦很多,后面以JQUERY的方法作对比. JS的方法会比JQUERY麻烦很多,主要则是因为FF浏览器,FF浏览器会把你的换行也当最DOM元素 复制代码 ...
- P66、面试题8:旋转数组的最小数字
题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素.例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数 ...