Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?

Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 2016 系统设计第一期 (档案一)MVC a标签 跳转 Html.ActionLink的用法

    html: <a class="J_menuItem" href="baidu.com">权限管理</a> cshtml: 原有样式: ...

  2. How to open MS word document from the SharePoint 2010 using Microsoft.Office.Interop.dll

    or this you must change the identity of word component inC:\windows\System32\comexp.mscto be interac ...

  3. Qt单元测试

    单元测试之作用要完成测试用例,保证设计上的耦合依赖通过测试用例,保证覆盖率,提高程序质量 QTest一些有用的静态函数QTest::qExecQTest::qSleepQTest::qWait   例 ...

  4. ios实现截屏(转)

    -(UIImage*) makeImage {  UIGraphicsBeginImageContext(self.view.bounds.size);  [self.view.layer rende ...

  5. Delphi XE5 android 捕获几个事件

    以下代码能监控到以下几个事件: FinishedLaunching     BecameActive     WillBecomeInactive    EnteredBackground    Wi ...

  6. 2338: [HNOI2011]数矩形 - BZOJ

    因为已经看了一眼题解,知道是算中点和长度,相同时构成一个矩形,所以就把所有的线段算出来,然后排序,相同的就更新答案 为了避免误差,我们都用整数存,中点直接相加就行了,没必要除2,长度也只要平方就行了, ...

  7. Eclipse编辑jsp、js文件时,经常出现卡死现象解决汇总

    使用Eclipse编辑jsp.js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲.将所有用过的方法罗列如下: 1.取消验证 windo ...

  8. Creating a new Signiant Transfer Engine because the previous transfer had to be canceled.

    From: http://stackoverflow.com/questions/10548196/application-loader-new-weird-warning-about-signian ...

  9. Visual C++ unicode and utf8 转换

    ATL宏: USES_CONVERSION; W2A A2W CString StringUtil::UTF8_to_UNICODE(const char *utf8_string, int leng ...

  10. memmove 和 memcpy的区别

    memcpy和memmove()都是C语言中的库函数,在头文件string.h中,作用是拷贝一定长度的内存的内容,原型分别如下:void *memcpy(void *dst, const void * ...