[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?
Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- CentOS安装配置Git服务器(gitosis)
主要参考: http://blog.csdn.net/dengjianqiang2011/article/details/9260435 辅助参考: http://freeloda.blog.51ct ...
- OO之策略模式
以下为策略模式详解: 引子: 使用策略就是要实现可扩展性,那么多态是不可少的.何谓可扩展性呢? 比如:我们用面向对象的思想来设计飞机,基类为飞机,飞机可以有很多种,客机,直升机,战斗机等,不同种类的飞 ...
- Netty 4.0 demo
netty是一个异步,事件驱动的网络编程框架&工具,使用netty,可以快速开发从可维护,高性能的协议服务和客户端应用.是一个继mina之后,一个非常受欢迎的nio网络框架 netty4.x和 ...
- 我的PHP之旅--XML初步
什么是XML? XML是可拓展标记语言,它和XHTML很像.但它和XHTML的目的性不一样,XHTML负责展示数据,而XML负责保存或交换传输数据. 而且XML可拓展,它没有固定的标签.它的标签可以自 ...
- 怎么在SQL Server 2008中还原.mdf数据文件
还原数据库文件的过程中,只有mdf文件,该怎么还原?在原来的SQL Server 2005中直接点击数据库然后附加就可以还原,但是在2008 版本中附加数据库文件则会出错(只有mdf文件){执行Tra ...
- CROSS APPLY和 OUTER APPLY 区别
转 http://www.cnblogs.com/end/archive/2011/02/17/1957011.html FROM employees AS e join employee ...
- 【扩展欧几里得】Bzoj 1477:青蛙的约会
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- uva 125
floyd 算法 如果存在无数条路 则存在a->a的路 a->b的路径数等于 a->i 和 i->b(0=<i<=_max) 路径数的乘积和 #includ ...
- 【转】Java自动装箱、拆箱、缓冲池
JDK5以后 Integer a = 3; 这是自动装箱int i = new Integer(2); 这是自动拆箱就是基本类型和其对应的包装类型在需要的时候可以互相 ...
- 【POJ 3335】 Rotating Scoreboard (多边形的核- - 半平面交应用)
Rotating Scoreboard Description This year, ACM/ICPC World finals will be held in a hall in form of a ...