[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?
Solution. It is $\scrM\otimes \scrM$ that is an invariant subspace of $A\otimes A$. Indeed, if $x,y\in M$, then $$\bex (A\otimes A)(x\otimes y)=(Ax)\otimes (Ay)\in M\otimes M. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 2016 系统设计第一期 (档案一)MVC a标签 跳转 Html.ActionLink的用法
html: <a class="J_menuItem" href="baidu.com">权限管理</a> cshtml: 原有样式: ...
- How to open MS word document from the SharePoint 2010 using Microsoft.Office.Interop.dll
or this you must change the identity of word component inC:\windows\System32\comexp.mscto be interac ...
- Qt单元测试
单元测试之作用要完成测试用例,保证设计上的耦合依赖通过测试用例,保证覆盖率,提高程序质量 QTest一些有用的静态函数QTest::qExecQTest::qSleepQTest::qWait 例 ...
- ios实现截屏(转)
-(UIImage*) makeImage { UIGraphicsBeginImageContext(self.view.bounds.size); [self.view.layer rende ...
- Delphi XE5 android 捕获几个事件
以下代码能监控到以下几个事件: FinishedLaunching BecameActive WillBecomeInactive EnteredBackground Wi ...
- 2338: [HNOI2011]数矩形 - BZOJ
因为已经看了一眼题解,知道是算中点和长度,相同时构成一个矩形,所以就把所有的线段算出来,然后排序,相同的就更新答案 为了避免误差,我们都用整数存,中点直接相加就行了,没必要除2,长度也只要平方就行了, ...
- Eclipse编辑jsp、js文件时,经常出现卡死现象解决汇总
使用Eclipse编辑jsp.js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲.将所有用过的方法罗列如下: 1.取消验证 windo ...
- Creating a new Signiant Transfer Engine because the previous transfer had to be canceled.
From: http://stackoverflow.com/questions/10548196/application-loader-new-weird-warning-about-signian ...
- Visual C++ unicode and utf8 转换
ATL宏: USES_CONVERSION; W2A A2W CString StringUtil::UTF8_to_UNICODE(const char *utf8_string, int leng ...
- memmove 和 memcpy的区别
memcpy和memmove()都是C语言中的库函数,在头文件string.h中,作用是拷贝一定长度的内存的内容,原型分别如下:void *memcpy(void *dst, const void * ...