Silver Cow Party
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 19325   Accepted: 8825

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
 
思路:单元最短路径,dijkstra算法,出发时分别以每一个点作为起点,搜索到达终点的最短路径;以及回来时从终点到达各点的最短路径,最后将来回两条路径长度取和,取其中的最大值。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<functional>
using namespace std;
typedef pair<int, int> P;
const int V_MAX = + ;
struct edge {
int to, time;
};
int V;
vector<edge>G[V_MAX];
int d[V_MAX];
int x[V_MAX];
void dijkstra(int s) {
priority_queue<P, vector<P>, greater<P>>que;
fill(d,d+V,INT_MAX);
d[s] = ;
que.push(P(,s));
while (!que.empty()) {
P p = que.top();que.pop();
int v = p.second;
if (d[v] < p.first)continue;
for (unsigned int i = ;i < G[v].size();i++) {
edge e = G[v][i];
if (d[e.to] > d[v] + e.time) {
d[e.to] = d[v] + e.time;
que.push(P(d[e.to],e.to));
}
}
}
} int main() {
int N, M,X;
scanf("%d%d%d", &N, &M, &X);
X--;
V = N;
for (int i = ;i < M;i++) {
edge E;
int from;
scanf("%d%d%d",&from,&E.to,&E.time);
from--;E.to--;
G[from].push_back(E);
}
dijkstra(X);
memset(x,,sizeof(x));
for (int i = ;i < V;i++) {
x[i] += d[i];
}
for (int i = ;i < V;i++) {
dijkstra(i);//以i点为中心,
x[i] += d[X];//计算i到目的地的最短距离并累加
}
int result = *max_element(x,x+V);
printf("%d",result);
return ;
}

这样用dijkstra算法搜索次数过多,耗时过多,看了hankcs博主的文章,很有启发,思路:分别以目的地为起点和终点,使用两次dijkstra算法即可,这样一来存路径时需要用两个数组,一个存正向路径,一个存反向路径,正向路径用于计算以目的地为起点时走到各点的最短路径,反向路径用于计算以目的地为终点时各点走到目的地的最短路径。

AC代码:

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<functional>
#include<string.h>
using namespace std;
typedef pair<int, int> P;
const int V_MAX = + ;
struct edge {
int to, time;
edge() {};
edge(int a,int b):to(a),time(b){}
};
int V;
vector<vector<edge>>G(V_MAX);//预定义容量,以防止越界
vector<vector<edge>>RG(V_MAX);
//vector<edge>G[V_MAX];
//vector<edge>RG[V_MAX];
int d[V_MAX];
int rd[V_MAX];
void dijkstra(int s) {
priority_queue<P, vector<P>, greater<P>>que;
fill(d,d+V,INT_MAX);
d[s] = ;
que.push(P(,s));
while (!que.empty()) {
P p = que.top();que.pop();
int v = p.second;
if (d[v] < p.first)continue;
for (unsigned int i = ;i < G[v].size();i++) {
edge e = G[v][i];
if (d[e.to] > d[v] + e.time) {
d[e.to] = d[v] + e.time;
que.push(P(d[e.to],e.to));
}
}
}
} int main() {
int N, M,X;
scanf("%d%d%d", &N, &M, &X);
X--;
V = N;
for (int i = ;i < M;i++) {
edge E;
int from,to,time;
scanf("%d%d%d",&from ,&to,&time);
from--;to--;
G[from].push_back(edge(to,time));
RG[to].push_back(edge(from,time));//存反向图
}
dijkstra(X);
//G = RG;
G.swap(RG);
memcpy(rd,d,sizeof(d));
dijkstra(X);
for (int i = ;i < V;i++) {
d[i] += rd[i];
}
int result = *max_element(d,d+V);
printf("%d",result);
return ;
}

poj 3268 Silver Cow Party的更多相关文章

  1. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  2. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  3. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  5. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  6. 图论 ---- spfa + 链式向前星 ---- poj 3268 : Silver Cow Party

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12674   Accepted: 5651 ...

  7. DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards

    题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...

  8. POJ 3268 Silver Cow Party (Dijkstra)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13982   Accepted: 6307 ...

  9. POJ 3268 Silver Cow Party (最短路dijkstra)

    Silver Cow Party 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/D Description One cow fr ...

随机推荐

  1. poj 3249 Test for Job (DAG最长路 记忆化搜索解决)

    Test for Job Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8990   Accepted: 2004 Desc ...

  2. Java虚拟机工作原理具体解释

    一.类载入器 首先来看一下java程序的运行过程. 从这个框图非常easy大体上了解java程序工作原理.首先,你写好java代码,保存到硬盘其中.然后你在命令行中输入 javac YourClass ...

  3. h5-5 canvas

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. 获取div相对文档的位置

    获取div相对文档的位置,两个方法 经测试 document.getElementById("btn").getBoundingClientRect() 在IE6下有2像素的bug ...

  5. paip.android 手机输入法制造大法

    paip.android 手机输入法制造大法 作者Attilax ,  EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.csdn.net/at ...

  6. Golang学习 - unsafe 包

    ------------------------------------------------------------ 指针类型: *类型:普通指针,用于传递对象地址,不能进行指针运算. unsaf ...

  7. 【技术文档】XuebaOnline配环境时遇到的问题和解决办法

    在Ubuntu下装XuebaOnline可能遇到的问题和解决办法 自动安装Python3.0以上版本 编译命令采用python3 manage.py runserver,所以在linux系统下需要安装 ...

  8. tachyon with spark

    spark1.2.0  tachyon0.5.0 jdk1.7 scala2.10.4 1.装好spark.tachyon.jdk.scala 2.修改spark-env.sh添加Tachyon客户端 ...

  9. sql over开窗函数

    1.使用over子句与rows_number()以及聚合函数进行使用,可以进行编号以及各种操作.而且利用over子句的分组效率比group by子句的效率更高. 2.在订单表(order)中统计中,生 ...

  10. IQueryable与IEnumberable的区别

    IEnumerable接口 公开枚举器,该枚举器支持在指定类型的集合上进行简单迭代.也就是说:实现了此接口的object,就可以直接使用foreach遍历此object: IQueryable 接口 ...