题目链接:http://poj.org/problem?id=1707

题意:给出n

在M为正整数且尽量小的前提下,使得n的系数均为整数。

思路:

i64 Gcd(i64 x,i64 y)
{
    if(y==0) return x;
    return Gcd(y,x%y);
}

i64 Lcm(i64 x,i64 y)
{
    x=x/Gcd(x,y)*y;
    if(x<0) x=-x;
    return x;
}

struct fraction
{
    i64 a,b;

    fraction() {}
    fraction(i64 x)
    {
        a=x; b=1;
    }

    fraction(i64 x,i64 y)
    {
        a=x; b=y;
        deal();
    }

    void deal()
    {
        if(b<0) b=-b,a=-a;
        i64 k=Gcd(a,b);
        if(k<0) k=-k;
        a/=k; b/=k;
    }

    fraction operator+(fraction p)
    {
        fraction ans;
        ans.b=Lcm(b,p.b);
        ans.a=ans.b/b*a+ans.b/p.b*p.a;
        ans.deal();
        return ans;
    }

    fraction operator-(fraction p)
    {
        fraction ans;
        ans.b=Lcm(b,p.b);
        ans.a=ans.b/b*a-ans.b/p.b*p.a;
        ans.deal();
        return ans;
    }

    fraction operator*(fraction p)
    {
        fraction ans;
        ans.a=a*p.a;
        ans.b=b*p.b;
        ans.deal();
        return ans;
    }

    fraction operator/(fraction p)
    {
        fraction ans;
        ans.a=a*p.b;
        ans.b=b*p.a;
        ans.deal();
        return ans;
    }

    void print()
    {
        printf("%lld/%lld\n",a,b);
    }
};

fraction B[20];
i64 C[N][N];

void init()
{
    int i,j;
    for(i=1;i<N;i++)
    {
        C[i][0]=C[i][i]=1;
        for(j=1;j<i;j++) C[i][j]=C[i-1][j-1]+C[i-1][j];
    }
    B[0]=fraction(1);
    for(i=1;i<=20;i++)
    {
        B[i]=fraction(0);
        for(j=0;j<i;j++) B[i]=B[i]-fraction(C[i+1][j])*B[j];
        B[i]=B[i]/fraction(C[i+1][i]);
    }
}

int n;
fraction a[N];

int main()
{
    init();
    Rush(n)
    {
        i64 i,L=1;
        for(i=0;i<=n;i++)
        {
            a[i]=fraction(C[n+1][i])*B[i]*fraction(1,n+1);
            L=Lcm(L,a[i].b);
        }
        printf("%lld ",L);
        a[1]=a[1]+fraction(1);
        for(i=0;i<=n;i++) printf("%lld ",L/a[i].b*a[i].a);
        puts("0");
    }
}

  

POJ 1707 Sum of powers(伯努利数)的更多相关文章

  1. [伯努利数] poj 1707 Sum of powers

    题目链接: http://poj.org/problem?id=1707 Language: Default Sum of powers Time Limit: 1000MS   Memory Lim ...

  2. UVa 766 Sum of powers (伯努利数)

    题意: 求 ,要求M尽量小. 析:这其实就是一个伯努利数,伯努利数公式如下: 伯努利数满足条件B0 = 1,并且 也有 几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个 ...

  3. ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法

    POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS     Memory Limit:65536KB     64bit IO Fo ...

  4. [CSAcademy]Sum of Powers

    [CSAcademy]Sum of Powers 题目大意: 给定\(n,m,k(n,m,k\le4096)\).一个无序可重集\(A\)为合法的,当且仅当\(|A|=m\)且\(\sum A_i=n ...

  5. POJ.2739 Sum of Consecutive Prime Numbers(水)

    POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...

  6. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  7. Euler's Sum of Powers Conjecture

    转帖:Euler's Sum of Powers Conjecture 存不存在四个大于1的整数的五次幂恰好是另一个整数的五次幂? 暴搜:O(n^4) 用dictionary:O(n^3) impor ...

  8. 【POJ1707】【伯努利数】Sum of powers

    Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...

  9. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

随机推荐

  1. C# list 筛选FindAll,根据参数过滤

    /// <summary> /// 汽车车型 获取 /// Redis Key=zgqp315_Redis_ModelNumberC_List /// </summary> / ...

  2. matlab实现高斯消去法、LU分解

    朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...

  3. iTween基础之Rotate(旋转角度)

    一.基础介绍:二.基础属性 原文地址 :http://blog.csdn.net/dingkun520wy/article/details/50696489 一.基础介绍 RotateTo:旋转游戏物 ...

  4. python学习小结6:模块

    模块:在Python中有一个概念叫做模块(module),简单地说,模块就是一个保存了Python代码的文件.          模块能定义函数,类和变量,模块里也能包含可执行的代码.         ...

  5. 对cnblogs.com用户体验的评价

    一.对于cnblogs.com的用户体验我们先对以下问题进行回答: 1.你是什么样的用户, 有什么样的心理, 对cnblogs 的期望值是什么? 我们是正在学习软件工程课程的在校计算机专业大学生,在博 ...

  6. openmeetings 视频会议系统介绍

    在功能上,视频会议具有如下特点(这一部分转自:http://www.kissthink.com/archive/5150.html): 1.该方基于P2P技术,服务器压力小.流畅.用户之间可以互相获取 ...

  7. 2014 Multi-University Training Contest 3

    官方解题报告http://blog.sina.com.cn/s/blog_a19ad7a10102uyiq.html Wow! Such Sequence! http://acm.hdu.edu.cn ...

  8. XML 实体扩展攻击

    XMl Entity Expansion(攻击)某种程度上类似于 XML Entity Expansion,但是它主要试图通过消耗目标程序的服务器环境来进行DOS攻击的.这种攻击基于XML Entit ...

  9. HDU 4509 湫湫系列故事——减肥记II(暴力模拟即可)

    看了题目后,没自己做,直接看别人题解了,这里转一下. 看了之后,突然想起scanf还可以按照自己写的格式输入数据啊,差点连这个都忘记了啊. 注意输入中时间可能有重复的. http://www.cnbl ...

  10. Oracle函数+for循环

    create or replace function FilterMinganci(str in varchar) return varchar2 is filterWorld varchar2(10 ...