总的来说,这题要2次用到polya定理。

由题目条件A*A=B*B+1,变形为(A-1)*(A+1)=K*B*B;

分别分解A-1和A+1的质因数,在合并在一起。

第一步:搜索B,对B*B的正方形涂色,基本的polya定理搞定,即C^(B*B)+C^((B*B+1)/2)+2*C^((B*B+3)/4).

第二步:搜索K,在A-1和A+1的因子中搜索,这样不会超时,在用polya定理,最后在结果上乘C就可以了……

 

  1 #include<iostream>
2 #include<stdio.h>
3 #include<algorithm>
4 #include<iomanip>
5 #include<cmath>
6 #include<string>
7 #include<vector>
8 using namespace std;
9 const long mod=1000000007;
10 int prime[40003],m,fac[1000][2],flen;
11 vector<int> v;
12 bool f[40003];
13 __int64 A,C,ans,ret_A,inverse_4,inverse_k;
14 void init()
15 {
16 __int64 i,j;
17 m=0;
18 for(i=2;i<=40000;i++)
19 if(f[i]==0)
20 {
21 prime[m++]=i;
22 for(j=i*i;j<=40000;j+=i)
23 f[j]=1;
24 }
25 }
26 __int64 extend_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
27 {
28 __int64 d;
29 if(b==0)
30 {
31 x=1;y=0;
32 return a;
33 }
34 else
35 {
36 d=extend_gcd(b,a%b,x,y);
37 __int64 temp=x;
38 x=y;
39 y=temp-a/b*y;
40 }
41 return d;
42 }
43 __int64 pows(__int64 a,__int64 b)
44 {
45 __int64 ans=1;
46 a%=mod;
47 while(b)
48 {
49 if(b&1) ans=(ans*a)%mod;
50 b>>=1;
51 a=(a*a)%mod;
52 }
53 return ans%mod;
54 }
55 void factor(__int64 n)
56 {
57 int i;
58 for(i=0;i<m&&prime[i]*prime[i]<=n;i++)
59 while(n%prime[i]==0)
60 {
61 v.push_back(prime[i]);
62 n/=prime[i];
63 }
64 if(n>1) v.push_back(n);
65 }
66 void combine()
67 {
68 sort(v.begin(),v.end());
69 int i,j;
70 flen=0;
71 fac[flen][0]=v[0];
72 fac[flen++][1]=1;
73 for(i=1;i<v.size();i++)
74 {
75 if(v[i]==fac[flen-1][0])
76 fac[flen-1][1]++;
77 else
78 {
79 fac[flen][0]=v[i];
80 fac[flen++][1]=1;
81 }
82 }
83 }
84 __int64 inverse(__int64 a)
85 {
86 __int64 x,y;
87 extend_gcd(a,mod,x,y);
88 return (x%mod+mod)%mod;
89 }
90 __int64 euler(__int64 n)
91 {
92 int i;
93 __int64 ans=1;
94 for(i=0;i<flen&&fac[i][0]*fac[i][0]<=n;i++)
95 {
96 if(n%fac[i][0]==0)
97 {
98 ans*=fac[i][0]-1;
99 n/=fac[i][0];
100 while(n%fac[i][0]==0)
101 {
102 ans*=fac[i][0];
103 n/=fac[i][0];
104 }
105 }
106 }
107 if(n>1) ans*=n-1;
108 return ans%mod;
109 }
110 void dfs(__int64 d,__int64 num,__int64 cnt_B,__int64 k)
111 {
112 if(d>=flen)
113 {
114 ret_A=(ret_A+pows(cnt_B,k/num)*euler(num)%mod)%mod;
115 return ;
116 }
117 for(int i=0;i<=fac[d][1];i++)
118 {
119 dfs(d+1,num,cnt_B,k);
120 num*=fac[d][0];
121 }
122 }
123 __int64 get_A(__int64 k,__int64 cnt_B)
124 {
125 ret_A=0;
126 dfs(0,1,cnt_B,k);
127 return ((ret_A*inverse_k)%mod)*C%mod;
128 }
129 __int64 get_B(__int64 n)
130 {
131 __int64 ans=pows(C,n*n);
132 ans=(ans+pows(C,(n*n+1)/2)%mod)%mod;
133 ans=(ans+2*pows(C,(n*n+3)/4)%mod)%mod;
134 return (ans*inverse_4)%mod;
135 }
136 //枚举B
137 //d表示深度,num表示枚举因子的大小
138 void dfsB(__int64 d,__int64 num)
139 {
140 if(d>=flen)
141 {
142 __int64 cnt_B=get_B(num);
143 __int64 k=(A*A-1)/num/num;
144 inverse_k=inverse(k);
145 ans=(ans+get_A(k,cnt_B))%mod;
146 return ;
147 }
148 int temp=fac[d][1];
149 for(int i=0;i<=temp;i+=2,fac[d][1]-=2)
150 {
151 dfsB(d+1,num);
152 num*=fac[d][0];
153 }
154 fac[d][1]=temp;
155 }
156 __int64 solve()
157 {
158 v.clear();
159 factor(A-1);
160 factor(A+1);
161 combine();
162 ans=0;
163 dfsB(0,1);
164 return ans;
165 }
166 int main()
167 {
168 init();
169 int t,k=0;
170 inverse_4=inverse(4);
171 cin>>t;
172 while(t--)
173 {
174 scanf("%I64d%I64d",&A,&C);
175 if(A==1)
176 printf("Case %d: %I64d\n",++k,C);
177 else printf("Case %d: %I64d\n",++k,solve());
178 }
179 return 0;
180 }

 

 

 

hdu 3441 Rotation的更多相关文章

  1. HDU 4708:Rotation Lock Puzzle

    Rotation Lock Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU 4708 Rotation Lock Puzzle(模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4708 题目大意:给定一个方形矩阵,边长为3-10的奇数.每一圈的数字可以沿着顺时针方向和逆时针方向旋转 ...

  3. HDU 4708 Rotation Lock Puzzle (简单题)

    Rotation Lock Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. hdu 4708 Rotation Lock Puzzle 2013年ICPC热身赛A题 旋转矩阵

    题意:给出一个n*n的矩阵,旋转每一圈数字,求出对角线可能的最大值,以及转到最大时的最小距离. 只要分析每一层就可以了,本来想用地址传递二维数组,发现行不通,改了一下就行了. 这里有个坑,比如: 1 ...

  5. IDA*、操作打表、并行处理-The Rotation Game HDU - 1667

    万恶之源 优秀题解 用文字终究难以穷尽代码的思想 思路 每次操作都有八种选择,相当于一棵每次延申八个子节点的搜索树,故搜索应该是一种方法.而这题要求求最少步数,我们就可以想到可以试试迭代加深搜索(但其 ...

  6. HDU 1667 The Rotation Game (A*迭代搜索)

    题目大意:略 每次选择一个最大深度K,跑IDA* 估价函数H=8-中间8个格里出现次数最多的数的个数x,即把它填满这个数最少需要8-x次操作,如果dep+H>K,就跳出.. 深搜的时候暴力修改, ...

  7. hdu 1667 The Rotation Game ( IDA* )

    题目大意: 给你一个“井”子状的board,对称的由24个方块组成,每个方块上有123三个数字中的一个.给你初始状态,共有八种变换方式,求字典序最小的最短的的变换路径使得,board中间的八个方块上数 ...

  8. HDU 1817Necklace of Beads(置换+Polya计数)

    Necklace of Beads Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. hduoj 4708 Rotation Lock Puzzle 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4708 Rotation Lock Puzzle Time Limit: 2000/1000 MS (Java/O ...

随机推荐

  1. 转载: ABAP动态内表操作

    顾名思义,动态表的列是可以根据数据的变化而变化的,会使报表显示更简洁漂亮. 以下是实现方法. ------------------------------------------- 1, 创建动态内表 ...

  2. [windows phone开发]新生助手的开发过程与体会二

    上一讲咱们谈了新生助手主页的基本的设计,今天我们谈一谈关于展现实景地图时等动画的设计,即Storyboard的应用. 在Windows phone中,Storyboard类表示通过时间线控制动画,并为 ...

  3. TextEdit验证

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Drawing;using ...

  4. Windows下MySQLroot密码破解

    Win下MySQL修改root密码的多种方法       ##win2003mysql的密码破解 方法1: 用SET PASSWORD命令 mysql -u root mysql> SET PA ...

  5. 封装鼠标滚轮事件_mousewheel

    function mousewheel(obj,fn){ obj.onmousewheel===null ? obj.onmousewheel=fun : obj.addEventListener(' ...

  6. Informix 物联网应用示例(转)

    相关概念 MQTT 是一个物联网传输协议,它被设计用于轻量级的发布/订阅式消息传输,旨在为低带宽和不稳定的网络环境中的物联网设备提供可靠的网络服务.MQTT 是专门针对物联网开发的轻量级传输协议.MQ ...

  7. Winform Krypton控件使用(一)

    在学生健康系统中前期考虑需求中,考虑过在C/S下使用Winform或WPF完成项目, 在winform下,考虑过两套插件,一个是DotNetBar, 控件很多,但这个是收费的,考虑到以后的版权和费用问 ...

  8. telnet 时代的 bbs

    人类曾经用telnet 来访问 bbs,后来有了www,web 浏览器取代了telnet Telnet协议是TCP/IP协议族中的一员 arp和ping的区别 ping也属于一个通信协议,是TCP/I ...

  9. PHP前端$.ajax传递数据到后台

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  10. 2016 医疗项目 Bootstrap 自适应页面布局(1)

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...