Description

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。

Sample Output

【样例输出1】
2
1
2
【样例输出2】
2
1
0
 
第一问第二问略过,第三问BSGS
-------------------------------------------------------------叫我分割线-----------------------------------------------------------
什么是BSGS呢?即baby-step-giant-step,翻译成中文就是小步大步法,用于解决类似x^y=z(mod  p) 求最小的y这样的问题(也许还能干别的,但本人弱渣,并不知道)
对于上面那个题目的推导
 
有点凌乱,等我想明白的再补
 #include<cstdio>
#define ll long long
#include<map>
#include<cmath>
using namespace std;
int T,k;
ll pow(ll x,int y,int p){
ll ans=;
while(y>){
if (y&==) ans=(ans*x)%p;
y=y>>;
x=(x*x)%p;
}
return ans;
} int gcd(int x,int y){
if (x%y==) return y;
return gcd(y,x%y);
} void exgcd(int a,int b,int &x,int &y){
if (b==){x=,y=;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-(a/b)*y;
} void solve2(int a,int z,int b){
int tmp=gcd(a,b),x,y;
if (z%tmp){printf("Orz, I cannot find x!\n");return;}
exgcd(a,b,x,y);
x=((ll)x*(z/tmp))%b;
while (x>) x-=b/tmp;
while (x<) x+=b/tmp;
printf("%d\n",x);
} map<int,int> mp;
void solve3(int y,int z,int p){
y%=p;
if (!y&&!z) {printf("1\n");return;}
if (!y){printf("Orz, I cannot find x!\n");return;}
mp.clear();
ll m=ceil(sqrt(p)),t=;
mp[]=m+;//y^0==1;
for (int i=;i<m;i++){
t=t*y%p;
if (!mp[t]) mp[t]=i;
}
ll tmp=pow(y,p--m,p),ine=;
for (int k=;k<m;k++){
int i=mp[z*ine%p];
if (i){
if (i==m+)i=;
printf("%d\n",k*m+i);
return;
}
ine=ine*tmp%p;
}
printf("Orz, I cannot find x!\n");
} int main(){
scanf("%d%d",&T,&k);
while (T--){
int y,z,p;
scanf("%d%d%d",&y,&z,&p);
if (k==) printf("%lld\n",pow(y,z,p));
if (k==) solve2(y,z,p);
if (k==) solve3(y,z,p);
}
}

【BZOJ 2242】[SDOI2011]计算器的更多相关文章

  1. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  2. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  3. BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]

    2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...

  4. bzoj 2242 [SDOI2011]计算器(数论知识)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  5. BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)

    同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...

  6. BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...

  7. bzoj 2242 [SDOI2011]计算器——BSGS模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...

  8. BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD

    题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...

  9. bzoj 2242: [SDOI2011]计算器

    #include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...

  10. [原博客] BZOJ 2242 [SDOI2011] 计算器

    题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...

随机推荐

  1. 汇总#pragma用法

    这几天忙着去复习了,但是心理总是不踏实,不到实验室里就觉得一天的生活变了个样,现在还是晚上来这里“搞起”吧,白天还是在复习准备考试.因为要开始学习freescale,准备明年的比赛了,觉得是时候开始搞 ...

  2. 【最短路】ACdream 1198 - Transformers' Mission

    Problem Description A group of transformers whose leader is Optimus Prime(擎天柱) were assigned a missi ...

  3. 学习28个HTML5特征、窍门和技术

    当下,H5火热得不行,写下这篇文章,认真的认识下HTML5. HTML5最早应该是09年左右被提出,然而当时受浏览器兼容性的影响,一直没得到普遍应用,最近也是因为移动端的发展,带动HTML5. 回归正 ...

  4. 如何通过PhpMyAdmin批量删除MYSQL数据库数据表

    使用这个方法前,强烈建议先备份整个数据库.至于怎么备份?你不会么?在本文下方留言吧. 具体方法:复制下面的php执行语句,保存为sql.php文件(注意配置数据库名称.密码.数据表头),通过ftp上传 ...

  5. Java Concurrency - 取消线程执行器中的线程

    When you work with an executor, you don't have to manage threads. You only implement the Runnable or ...

  6. Java Concurrency - Fork/Join Framework

    Normally, when you implement a simple, concurrent Java application, you implement some Runnable obje ...

  7. Activity的启动模式(android:launchMode)

    在android里,有4种activity的启动模式,分别为: “standard” (默认) “singleTop” “singleTask” “singleInstance” 它们主要有如下不同: ...

  8. C#中的 ref 传进出的到底是什么 解惑篇

    今天在浏览博文时,看到这篇文章:C#中的ref 传进出的到底是什么 ? 在传对象时使用ref的疑问 另附言: 本文写于早上,就在想发布的那瞬间,靠,公司断网了,原来修改的部分丢失了. 网一断就是一天了 ...

  9. JAVA语法之小结

    对于JAVA的语法,我做了个小节: 类名:所有类名称首字母大写,如果由几个单词组成,那么组合内的第一个单词首字母应当大写,可以包括数字但是不能以数字开头. 方法名:方法没应当小写,如果由几个单词组成, ...

  10. kettle 表输入+流查询 与 数据库查询

    他们的主要区别: •流查询步骤只能进行等值查询,数据库查询步骤可以进行非等值查询 •流查询在查询之前把数据都加载到内存里,数据库查询可以选择是否把数据加载到内存. •进行等值查询时,数据库查询步骤如果 ...