Circle Through Three Points
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3169   Accepted: 1342

Description

Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.


The solution is to be printed as an equation of the form

	(x - h)^2 + (y - k)^2 = r^2				(1)

and an equation of the form

	x^2 + y^2 + cx + dy - e = 0				(2)

Input

Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal
point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the
equations. Print a single blank line after each equation pair.

Sample Input

7.0 -5.0 -1.0 1.0 0.0 -6.0
1.0 7.0 8.0 6.0 7.0 -2.0

Sample Output

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0 (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

给定三个点,求三角形的外接圆,题目非常easy,练一下计算几何的模板代码。输出非常恶心。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/4/19 23:46:03
File Name :8.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0? 1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
Circle CircumscribedCircle(Point p1,Point p2,Point p3){
double Bx=p2.x-p1.x,By=p2.y-p1.y;
double Cx=p3.x-p1.x,Cy=p3.y-p1.y;
double D=2*(Bx*Cy-By*Cx);
double cx=(Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
double cy=(Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
Point p=Point(cx,cy);
return Circle(p,Length(p1-p));
}
void output(double R, Point P0)
{
double C;
if(P0.x>0)printf("(x - %.3lf)^2 + ",P0.x);else printf("(x + %.3lf)^2 + ",P0.x*(-1));
if(P0.y>0)printf("(y - %.3lf)^2 = %.3f^2\n",P0.y,R);else printf("(y + %.3lf)^2 = %.3f^2\n",P0.y*(-1),R);
printf("x^2 + y^2 ");
if(P0.x>0)printf("- %.3lfx ",P0.x*2);else printf("+ %.3lfx ",P0.x*(-2));
if(P0.y>0)printf("- %.3lfy ",P0.y*2);else printf("+ %.3lfy ",P0.y*(-2));
C = P0.x*P0.x + P0.y*P0.y - R*R;
if(C>0)printf("+ %.3lf = 0\n",C);else printf("- %.3lf = 0\n",C*(-1));
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
Point a,b,c;
Circle p;
while(cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y){
p=CircumscribedCircle(a,b,c);
output(p.r,p.c);
puts("");
}
return 0;
}

POJ 1329 三角外接圆的更多相关文章

  1. POJ 1329 Circle Through Three Points(三角形外接圆)

    题目链接:http://poj.org/problem?id=1329 #include<cstdio> #include<cmath> #include<algorit ...

  2. poj 1329 Circle Through Three Points(求圆心+输出)

    题目链接:http://poj.org/problem?id=1329 输出很蛋疼,要考虑系数为0,输出也不同 #include<cstdio> #include<cstring&g ...

  3. ●POJ 1329 Circle Through Three Points

    题链: http://poj.org/problem?id=1329 题解: 计算几何,求过不共线的三点的圆 就是用向量暴力算出来的东西... (设出外心M的坐标,由于$|\vec{MA}|=|\ve ...

  4. poj 1329(已知三点求外接圆方程.)

    Circle Through Three Points Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3766   Acce ...

  5. POJ 1329 Circle Through Three Points(三角形外心)

    题目链接 抄的外心模版.然后,输出认真一点.1Y. #include <cstdio> #include <cstring> #include <string> # ...

  6. POJ - 1329 Circle Through Three Points 求圆

    Circle Through Three Points Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4112   Acce ...

  7. POJ 1329

    模板题,注意一下输出就可以. #include <iostream> #include <cstdio> #include <cmath> #include < ...

  8. [转] POJ计算几何

    转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板 ...

  9. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

随机推荐

  1. Innodb物理存储结构系列1

    本篇先介绍 下Innodb表空间,文件相关的内存数据结构. 1. 数据结构 Innodb的tablespace和文件的关系,是一对多的关系,先来看三个结构体 1. fil_system_struct: ...

  2. 深入理解Java虚拟机 - 垃圾收集概述

    首先需要澄清的是,垃圾收集(GC)的历史远比Java要久远,当我们意识到手动管理内存所带来的麻烦时,懒惰的天性推动先驱们寻找更为简单.易用.关键是傻瓜式的内存管理技术.GC技术起源于1960年诞生于M ...

  3. poj2478

    比较简单的树形dp; 定义s[i]为节点i的子树节点数和(包括自身):叶子节点s[j]=1; s[i]=signma(s[k])+1 (k是i的孩子) 则i满足的条件是 1.s[k]<=n di ...

  4. A*算法完全理解

    注:原文出自Patrick Lester,一稿翻译为Panic.很久以前的老文章了,但我觉得真的非常的经典,想把它完善一下让以后的人能够更好的体会原作者和原翻译的精髓吧.我在此基础上修改了部分译文,更 ...

  5. NOI2002 荒岛野人

    这题其实黑书上有,只是我脑残的没想起来…… 其实就是拓展欧几里得算法 我参看的题解:http://www.cnblogs.com/Rinyo/archive/2012/11/25/2788373.ht ...

  6. Welcome to Linux From Scratch!

    /**************************************************************************** * Welcome to Linux Fro ...

  7. Mysql加密方式

    MySQL数据库的认证密码有两种方式, MySQL 4.1版本之前是MySQL323加密,MySQL 4.1和之后的版本都是MySQLSHA1加密, MySQL数据库中自带Old_Password(s ...

  8. (转载)HTTP URL

    HTTP URL的格式如下: http://host[“:”post][abs_path] 其中http表示要通过HTTP协议来定位网络资源.host表示合法的Internet主机域名或IP地址(以点 ...

  9. Webdriver API (一)

    (转载) 1.1  下载selenium2.0的包 官方download包地址:http://code.google.com/p/selenium/downloads/list 官方User Guid ...

  10. 建立第一个OpenGL工程(GLUT)

    本文参考了<计算机图形学>(Donald Hearn著)的第2.9节. OpenGL基本函数库用来描述图元.属性.几何变换.观察变换和进行许多其他的操作.OpenGL被设计成与硬件无关,因 ...