Circle Through Three Points
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3169   Accepted: 1342

Description

Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.


The solution is to be printed as an equation of the form

	(x - h)^2 + (y - k)^2 = r^2				(1)

and an equation of the form

	x^2 + y^2 + cx + dy - e = 0				(2)

Input

Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal
point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the
equations. Print a single blank line after each equation pair.

Sample Input

7.0 -5.0 -1.0 1.0 0.0 -6.0
1.0 7.0 8.0 6.0 7.0 -2.0

Sample Output

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0 (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

给定三个点,求三角形的外接圆,题目非常easy,练一下计算几何的模板代码。输出非常恶心。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/4/19 23:46:03
File Name :8.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0? 1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
Circle CircumscribedCircle(Point p1,Point p2,Point p3){
double Bx=p2.x-p1.x,By=p2.y-p1.y;
double Cx=p3.x-p1.x,Cy=p3.y-p1.y;
double D=2*(Bx*Cy-By*Cx);
double cx=(Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
double cy=(Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
Point p=Point(cx,cy);
return Circle(p,Length(p1-p));
}
void output(double R, Point P0)
{
double C;
if(P0.x>0)printf("(x - %.3lf)^2 + ",P0.x);else printf("(x + %.3lf)^2 + ",P0.x*(-1));
if(P0.y>0)printf("(y - %.3lf)^2 = %.3f^2\n",P0.y,R);else printf("(y + %.3lf)^2 = %.3f^2\n",P0.y*(-1),R);
printf("x^2 + y^2 ");
if(P0.x>0)printf("- %.3lfx ",P0.x*2);else printf("+ %.3lfx ",P0.x*(-2));
if(P0.y>0)printf("- %.3lfy ",P0.y*2);else printf("+ %.3lfy ",P0.y*(-2));
C = P0.x*P0.x + P0.y*P0.y - R*R;
if(C>0)printf("+ %.3lf = 0\n",C);else printf("- %.3lf = 0\n",C*(-1));
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
Point a,b,c;
Circle p;
while(cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y){
p=CircumscribedCircle(a,b,c);
output(p.r,p.c);
puts("");
}
return 0;
}

POJ 1329 三角外接圆的更多相关文章

  1. POJ 1329 Circle Through Three Points(三角形外接圆)

    题目链接:http://poj.org/problem?id=1329 #include<cstdio> #include<cmath> #include<algorit ...

  2. poj 1329 Circle Through Three Points(求圆心+输出)

    题目链接:http://poj.org/problem?id=1329 输出很蛋疼,要考虑系数为0,输出也不同 #include<cstdio> #include<cstring&g ...

  3. ●POJ 1329 Circle Through Three Points

    题链: http://poj.org/problem?id=1329 题解: 计算几何,求过不共线的三点的圆 就是用向量暴力算出来的东西... (设出外心M的坐标,由于$|\vec{MA}|=|\ve ...

  4. poj 1329(已知三点求外接圆方程.)

    Circle Through Three Points Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3766   Acce ...

  5. POJ 1329 Circle Through Three Points(三角形外心)

    题目链接 抄的外心模版.然后,输出认真一点.1Y. #include <cstdio> #include <cstring> #include <string> # ...

  6. POJ - 1329 Circle Through Three Points 求圆

    Circle Through Three Points Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4112   Acce ...

  7. POJ 1329

    模板题,注意一下输出就可以. #include <iostream> #include <cstdio> #include <cmath> #include < ...

  8. [转] POJ计算几何

    转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板 ...

  9. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

随机推荐

  1. [原]Unity3D深入浅出 - 雾效(Fog)

    在Unity中开启雾效的方式:依次选中菜单栏中的 Edit - Render Settings 项,勾选Fog 选框即可开启雾效.雾效的参数如下: Fog Color:雾的颜色. Fog Mode:雾 ...

  2. HNOI2008玩具装箱 (斜率优化)

    总算A了,心情好激动…… 如果会了一类斜率优化,基本上这类题就成了套模版了…… 只是k函数不同 var n,l,x,tail,head,m:int64; i,j:longint; dp,q,s:..] ...

  3. [HDU 1695] GCD

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. 理解java reference

    Java世界泰山北斗级大作<Thinking In Java>切入Java就提出“Everything is Object”.在Java这个充满Object的世界中,reference是一 ...

  5. POJ 1815 Friendship ★(字典序最小点割集)

    [题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...

  6. apache开源项目--Apache Drill

    为了帮助企业用户寻找更为有效.加快Hadoop数据查询的方法,Apache 软件基金会发起了一项名为“Drill”的开源项目.Apache Drill 实现了 Google's Dremel. Apa ...

  7. undo日志

    InnoDB’s Undo 前言 Undo log是InnoDB MVCC事务特性的重要组成部分.当我们对记录做了变更操作时就会产生undo记录,Undo记录默认被记录到系统表空间(ibdata)中, ...

  8. POJ 3107-Godfather(树形dp)

    题意: 有n个节点的树,删除一个点,得到的最大联通分支最小,求这样点的集合 分析: dp[i]表示删除i所得最大联通分支,遍历一遍节点即可,该题用vector会超时 #include <map& ...

  9. 解决session失效之后登陆后重新返回之前的页面

    在全局拦截器设置保存之前的url存入session中 登陆之后的地址再重session中存 request只用作一次请求 如果页面跳转几次的话原来的url就不存在了建议存在session @Overr ...

  10. 深入浅出JavaScript函数 v 0.5

    本文的观点是建立在<JavaScript权威指南 6th Ed> <JavaScript高级编程 3th Ed> <JavaScript精粹 2th Ed>之上, ...