树-哈夫曼树(Huffman Tree)
概述
哈夫曼树:树的带权路径长度达到最小。
构造规则
1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
3. 从森林中删除选取的两棵树,并将新树加入森林;
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。
基本操作
定义
1 权值
2 左孩子
3 右孩子
4 父节点
构造哈夫曼树(使用最小堆)
1 构造最小堆;
2 进入for循环:
(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆);
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆;
(03) 然后,新建节点parent,并将它作为left和right的父节点;
(04) 接着,将parent的数据复制给最小堆中的指定节点。
树-哈夫曼树(Huffman Tree)的更多相关文章
- [算法]Huffman树(哈夫曼树)
目录 一.关于Huffman树 二.具体实现 例1:P1090 合并果子 例2:P2168 [NOI2015]荷马史诗 一.关于Huffman树 Huffman树(哈夫曼树)可以解决下述问题: 一颗\ ...
- 赫夫曼\哈夫曼\霍夫曼编码 (Huffman Tree)
哈夫曼树 给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离 ...
- Huffman Tree (哈夫曼树学习)
WPL 和哈夫曼树 哈夫曼树,又称最优二叉树,是一棵带权值路径长度(WPL,Weighted Path Length of Tree)最短的树,权值较大的节点离根更近. 首先介绍一下什么是 WPL,其 ...
- 哈夫曼(huffman)树和哈夫曼编码
哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60 ...
- word2vec 中的数学原理二 预备知识 霍夫曼树
主要参考: word2vec 中的数学原理详解 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码. ...
- java实现哈弗曼树和哈夫曼树压缩
本篇博文将介绍什么是哈夫曼树,并且如何在java语言中构建一棵哈夫曼树,怎么利用哈夫曼树实现对文件的压缩和解压.首先,先来了解下什么哈夫曼树. 一.哈夫曼树 哈夫曼树属于二叉树,即树的结点最多拥有2个 ...
- 树&二叉树&哈夫曼树
1.树 需要注意的两点:n(n>=0)表示结点的个数,m表示子树的个数 (1)n>0时,树的根节点是唯一的. (2)m>0时,子树的个数没有限制. 结点的度和树的度 (1)结点的度是 ...
- [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)
一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...
- (哈夫曼树)HuffmanTree的java实现
参考自:http://blog.csdn.net/jdhanhua/article/details/6621026 哈夫曼树 哈夫曼树(霍夫曼树)又称为最优树. 1.路径和路径长度在一棵树中,从一个结 ...
随机推荐
- 关于delphi Assigned
1. 根据 Delphi 指令参考手册中 说明: Assigned 函式在参数不为 nil 时传回 True, 表示指针已经指到某个内存地址,这个内存地址可能是一个对象地首地址,也可能在函数或过程中, ...
- 50. Pow(x, n)
题目: Implement pow(x, n). 链接: http://leetcode.com/problems/powx-n/ 题解: 使用二分法求实数幂,假如不建立临时变量halfPow,直接r ...
- C#使用sharppcap实现网络抓包
sharppcap dll的下载地址: http://sourceforge.net/directory/os:windows/?q=sharppcap 具体使用详细步骤: http://www.co ...
- Androidz之Activity概要学习
Androidz之Activity概要学习 1. Activity类概述 Activity(活动)是一个单独的.能获取焦点的,且能与用户交互的东西.所以我们通常在Activity类中的onCr ...
- java知识积累——单元测试和JUnit(二)
首先来复习一下几个重要知识点,然后接着进行一些介绍.在上一篇文章中,我曾经贴过下面这张图片: 在Which method stubs would you like to create?这里,现在结合4 ...
- [HDOJ3635]Dragon Balls(并查集,路径压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3635 题意:有n个龙珠,n个城市.初始状态第i个龙珠在第i个城市里.接下来有两个操作: T A B:把 ...
- th固定 td滚动的表格实现
为什么这样? 体验好 原理 通过两个表格,使其th td 对应,产生一种错觉. 代码 1.html <div class="content"> <div clas ...
- km算法的个人理解
首先相对于上个blog讲的匈牙利算法用于解决无权二分图的最佳匹配,km算法则是在匈牙利算法基础上更进一层的,每条边增加了权值后,真的开始看时有些无厘头,觉得没有什么好方法,但两位牛人Kuhn-Munk ...
- HTTPS通信机制
概述 使用HTTP协议进行通信时,由于传输的是明文所以很容易遭到窃听,就算是加密过的信息也容易在传输中遭受到篡改,因此需要在HTTP协议基础上添加加密处理,认证处理等,有了这些处理机制的HTTP成为H ...
- UVa 11916 (离散对数) Emoogle Grid
因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子 ...