概述

哈夫曼树:树的带权路径长度达到最小。

构造规则

1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
3. 从森林中删除选取的两棵树,并将新树加入森林;
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

基本操作

定义

1 权值

2 左孩子

3 右孩子

4 父节点

构造哈夫曼树(使用最小堆)

1 构造最小堆;

2 进入for循环:

(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆);

(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆;

(03) 然后,新建节点parent,并将它作为left和right的父节点;

(04) 接着,将parent的数据复制给最小堆中的指定节点。

树-哈夫曼树(Huffman Tree)的更多相关文章

  1. [算法]Huffman树(哈夫曼树)

    目录 一.关于Huffman树 二.具体实现 例1:P1090 合并果子 例2:P2168 [NOI2015]荷马史诗 一.关于Huffman树 Huffman树(哈夫曼树)可以解决下述问题: 一颗\ ...

  2. 赫夫曼\哈夫曼\霍夫曼编码 (Huffman Tree)

    哈夫曼树 给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离 ...

  3. Huffman Tree (哈夫曼树学习)

    WPL 和哈夫曼树 哈夫曼树,又称最优二叉树,是一棵带权值路径长度(WPL,Weighted Path Length of Tree)最短的树,权值较大的节点离根更近. 首先介绍一下什么是 WPL,其 ...

  4. 哈夫曼(huffman)树和哈夫曼编码

    哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60 ...

  5. word2vec 中的数学原理二 预备知识 霍夫曼树

    主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码.  ...

  6. java实现哈弗曼树和哈夫曼树压缩

    本篇博文将介绍什么是哈夫曼树,并且如何在java语言中构建一棵哈夫曼树,怎么利用哈夫曼树实现对文件的压缩和解压.首先,先来了解下什么哈夫曼树. 一.哈夫曼树 哈夫曼树属于二叉树,即树的结点最多拥有2个 ...

  7. 树&二叉树&哈夫曼树

    1.树 需要注意的两点:n(n>=0)表示结点的个数,m表示子树的个数 (1)n>0时,树的根节点是唯一的. (2)m>0时,子树的个数没有限制. 结点的度和树的度 (1)结点的度是 ...

  8. [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)

    一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...

  9. (哈夫曼树)HuffmanTree的java实现

    参考自:http://blog.csdn.net/jdhanhua/article/details/6621026 哈夫曼树 哈夫曼树(霍夫曼树)又称为最优树. 1.路径和路径长度在一棵树中,从一个结 ...

随机推荐

  1. 在PowerDesigner中设计物理模型3——视图、存储过程和函数

    原文:在PowerDesigner中设计物理模型3--视图.存储过程和函数 视图 在SQL Server中视图定义了一个SQL查询,一个查询中可以查询一个表也可以查询多个表,在PD中定义视图与在SQL ...

  2. Android Studio 初探

    前言 上周由于写了一篇关于"Eclipse+ADT+Android SDK 搭建安卓开发环境" 的博文,其他博主们表示相当的不悦,都什么年代了还用Eclipse+ADT开发安卓应用 ...

  3. CF198 D2

    B. Maximal Area Quadrilateral 题意:在N个点中构建四边形,使得四边形面积最大,且不自交. 分析:不自交四边形可以剖分成两个三角形,因此可以在O(N^2)内枚举对角线,然后 ...

  4. Linux下禁用、启用SeLinux

    一些Linux默认都是启用SeLinux的,在安装操作系统的时候我们可以选择开启或者关闭SeLinux,但是在安装完系统之后又如何开启与关闭呢? 在/etc/sysconf下有一个SeLinux文件, ...

  5. PCL—低层次视觉—点云分割(RanSaC)

    点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现.不过多插一句,自Niloy J Mitra教授的Global contrast based salient region ...

  6. linux jdk bin安装

    1.jdk-1_5_0_06-linux-i586.bin下载到/usr/soft,赋予可执行权限:chmod 755jdk-1_5_0_06-linux-i586.bin 2.执行:./jdk-1_ ...

  7. 写Java程序要体现面向对象

          对于之前写的一篇文章现在想想存在不足之处,之前写的测试ArrayList和LinkedList的各项操作性能比较的程序没有体现面向对象的封装特性,所以,今天把代码重新写了一遍,其实改动的地 ...

  8. Android使用Fragment程序崩溃

    调用Fragment的Activity要继承并实现Fragment.OnFragmentInteractionListener

  9. C#编写媒体播放器--Microsoft的Directx提供的DirectShow组件,该组件的程序集QuartzTypeLib.dll.

    使用C#编写媒体播放器时,需要用到Microsoft的Directx提供的DirectShow组件.用该组件前需要先注册程序集QuartzTypeLib.dll. 1.用QuartzTypeLib.d ...

  10. word引用错误

    错误 4317 无法嵌入互操作类型“Microsoft.Office.Interop.Word.ApplicationClass”.请改用适用的接口. 类型“Microsoft.Office.Inte ...