题意

求Σ{1<=i<N} Σ{i<j<=N} GCD(i, j)     (N<=4000000)

分析

原始思路

暴力求明显是不行的,我们把式子简化形式一下发现它可以写成Σ{2<=j<=N} GCD(1~j-1, j)

这个形式就给我们一种思路:可以只枚举j,然后快速算出GCD(1~j-1, j)

我们当然不能枚举1~j-1那么算,那么再换种思路,枚举可能的答案k,即j的所有约数。分别计算GCD(1~j-1, j) = k的方案数(HDU 1695),然后加起来就能求出和了。

【求GCD(x, j) = k,x ∈ (1, j-1)的个数】我们知道j必须是k的倍数,所以可以在等式两边同时除以k变成:GCD(x, j/k) = 1,x ∈ (1, j/k-1)。那么显然答案等于phi(j/k)。

进一步优化

上面的方法还是超时,我们还需要优化。在求j的约数时会有很多无用状态,它的过程很像是暴力判断素数一样,联想到筛法求素数,我们也可以想到类似的思路:枚举k,那么k的倍数就是j,然后再算GCD(1~j-1, j) = k。

#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAX = 4000002;
int phi[MAX];
bool noprime[MAX];
vector prime;
void Euler(int n){
phi[1] = 0;
for (int i = 2; i

UVA 11426 GCD-Extreme(II) ★ (欧拉函数)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  2. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  3. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  4. UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

    Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...

  5. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

  6. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  7. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  8. UVA11426 GCD - Extreme (II)---欧拉函数的运用

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA11426 GCD - Extreme (II) —— 欧拉函数

    题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...

  10. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

随机推荐

  1. c++ 时间与字符串转换

    .时间转字符串函数 size_t strftime( char *strDest, size_t maxsize, const char *format, const struct tm *timep ...

  2. github 中删除/更名版本库(repository)

    问题描述: github 中版本库创建/删除/更该名称 问题解决:            (1)创建版本库(Repository) 注:        在上图中的+按钮图标指示的是创建版本库的按钮 注 ...

  3. oracle——分析函数——排序值分析函数

    一.问题描述 查询列表时,我们有时需要对查询结果依据某个字段进行排名. 如果每条记录在排序字段上都不相同,我们可以将原查询作为一个视图,查询其rownum,便可以实现简单排序,例如: select r ...

  4. uva 11375

    思路是刘书上的 但是个高精度  java 大数 ~~ import java.util.*; import java.io.*; import java.math.BigInteger; public ...

  5. HDOJ-1999 不可摸数

    不可摸数 转自:http://www.cnblogs.com/dongsheng/archive/2012/08/18/2645594.html Time Limit: 2000/1000 MS (J ...

  6. Spring多资源文件properties的配置

    Spring简化了加载资源文件的配置,可以通过<context:property-placeholder去加载,这个元素的写法如下: <context:property-placehold ...

  7. Protege汉字不能正常显示问题

    在Protege5.0中有下面的问题: 点击uses,汉字不能正常显示. 在qq群里面问到,可以通过设置label的方式,在对类,子类命名成英语的,点击annotations,在label中设置汉字名 ...

  8. hdu 1002 java 大数相加

    package Main; //import java.io.InputStream; import java.math.BigDecimal; import java.util.Scanner; p ...

  9. stringUtils是apache下的Java jar补充包

    org.apache.commons.lang.StringUtils StringUtils中一共有130多个方法,并且都是static的, 所以我们可以这样调用StringUtils.xxx().

  10. Ubuntu下编译运行Kamailio

    kamailio----配置没有成功,这个文档过几天删除,因为这个项目的文档非常少,而且qq群里的人也不活跃,现在正在研究Freeswitch,如果能够满足,就不研究这个了,这篇文档会删除. Kama ...