比较裸的FFT(快速傅里叶变换),也是为了这道题而去学的,厚的白书上有简单提到,不过还是推荐看算法导论,讲的很详细。

代码的话是照着别人敲的,推荐:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html写的很详细。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL __int64 const double PI=acos(-1.0); struct complex{ //实数:r实部,i虚部
double r,i;
complex(double rr=,double ii=)
{
r=rr;
i=ii;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
}; void change(complex y[],int len) //位逆序置换
{
int i,j,k;
for(i=,j=len/;i<len-;i++)
{
if(i<j)
swap(y[i],y[j]);
k=len/;
while(j>=k)
{
j-=k;
k/=;
}
if(j<k)
j+=k;
}
} void fft(complex y[],int len,int on)
{
change(y,len);
for(int h=;h<=len;h<<=)
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j=;j<len;j+=h)
{
complex w(,);
for(int k=j;k<j+h/;k++)
{
complex u=y[k];
complex t=w*y[k+h/];
y[k]=u+t;
y[k+h/]=u-t;
w=w*wn;
}
}
}
if(on==-)
for(int i=;i<len;i++)
y[i].r/=len;
} const int MAXN=;
complex x1[MAXN];
int a[MAXN/];
LL num[MAXN];
LL sum[MAXN]; int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(num,,sizeof(num));
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
//FFT
sort(a,a+n);
int len1=a[n-]+;
int len=;
while(len<*len1)
len<<=;
for(int i=;i<len1;i++)
x1[i]=complex(num[i],);
for(int i=len1;i<len;i++) //补0
x1[i]=complex(,);
fft(x1,len,); //求值
for(int i=;i<len;i++) //乘法
x1[i]=x1[i]*x1[i];
fft(x1,len,-); //插值
//
for(int i=;i<len;i++)
num[i]=(LL)(x1[i].r+0.5);
len=*a[n-];
for(int i=;i<n;i++)
num[a[i]+a[i]]--;
for(int i=;i<=len;i++)
num[i]/=;
sum[]=;
for(int i=;i<=len;i++)
sum[i]=sum[i-]+num[i];
LL cnt=;
for(int i=;i<n;i++)
{
cnt+=sum[len]-sum[a[i]];
cnt-=(LL)(n--i)*(n-i-)/;
cnt-=(n-);
cnt-=(LL)(n--i)*(n-i-)/;
}
LL tot=(LL)n*(n-)*(n-)/;
printf("%.7f\n",(double)cnt/tot);
}
return ;
}

hdu 4609 3-idiots(快速傅里叶FFT)的更多相关文章

  1. 解题:HDU 4609 Three Idiots

    题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...

  2. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  3. 快速傅里叶变换应用之二 hdu 4609 3-idiots

    快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...

  4. hdu 4609 3-idiots <FFT>

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 给定 N 个正整数, 表示 N 条线段的长度, 问任取 3 条, 可以构成三角形的概率为多 ...

  5. HDU 4609 3-idiots(FFT)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...

  6. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

  7. hdu 4609 3-idiots——FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4609 答案就是随便选三条边的方案 - 不合法的方案. 不合法的方案就是算出 x+y = k 的方案数 g[ ...

  8. hdu 4609 3-idiots —— FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4609 算不合法的比较方便: 枚举最大的边,每种情况算了2次,而全排列算了6次,所以还要乘3: 注意枚举最大 ...

  9. FFT(快速傅里叶变换):HDU 4609 3-idiots

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. 在线最优化求解(Online Optimization)之三:FOBOS

    在线最优化求解(Online Optimization)之三:FOBOS FOBOS (Forward-Backward Splitting)是由John Duchi和Yoram Singer提出的[ ...

  2. 源代码管理工具TFS2013安装与使用【转载】

    本文来源:博客园:http://www.cnblogs.com/suxinlcq/p/3956930.html 作者:suxin 最近公司新开发一个项目要用微软的TFS2013进行项目的源代码管理,以 ...

  3. Java中LinkedList的remove方法真的耗时O(1)吗?

    这个问题其实来源于Leetcode的一道题目,也就是上一篇日志 LRU Cache.在使用LinkedList超时后,换成ArrayList居然AC了,而问题居然是在于List.remove(Obje ...

  4. 【POJ3243】拓展BSGS(附hash版)

    上一篇博文中说道了baby step giant step的方法(简称BSGS),不过对于XY mod Z = K ,若x和z并不互质,则不能直接套用BSGS的方法了. 为什么?因为这时候不存在逆元了 ...

  5. lintcode:数飞机

    数飞机 给出飞机的起飞和降落时间的列表,用 interval 序列表示. 请计算出天上同时最多有多少架飞机? 如果多架飞机降落和起飞在同一时刻,我们认为降落有优先权. 样例 对于每架飞机的起降时间列表 ...

  6. java retention注解

    Retention注解 Retention(保留)注解说明,这种类型的注解会被保留到那个阶段. 有三个值:1.RetentionPolicy.SOURCE —— 这种类型的Annotations只在源 ...

  7. 谈Delphi中SSL协议的应用(好多相关文章)

    摘要:本文主要介绍如何在Delphi中使用SSL协议.一共分为七个部分:(1)SSL协议是什么?(2)Delphi中如何使用SSL协议?(3)SSL客户端编程实例.(4)SSL服务端编程实例.(5)S ...

  8. Spring的父子容器问题

    在ssm框架搭建的时候 配置了一个Spring容器,又配置了一个前端控制器 <!-- 初始化spring容器 --> <context-param> <param-nam ...

  9. 2014图灵技术图书最受欢迎TOP15

    来自:图灵社区昨晚给我发的邮件,感觉不错,和大家分享,mark下. [小编语] 回首2014,感谢小伙伴们一路相随.让我们2015一起更快乐地玩耍.今天小编为大家盘点一下过去2014年表现最给力的技术 ...

  10. ios中addtarget

    Target-action:目标-动作模式,它贯穿于iOS开发始终.但是对于初学者来说,还是被这种模式搞得一头雾水. 其实Target-action模式很简单,就是当某个事件发生时,调用那个对象中的那 ...