本例将会展示对确实值进行填充能比简单的对样例中缺失值进行简单的丢弃能获得更好的结果.填充不一定能提升预测精度,所以请通过交叉验证进行检验.有时删除有缺失值的记录或使用标记符号会更有效.

缺失值可以被替换为均值,中值,或使用strategy超参数最高频值.中值是对于具有可以主宰的高强度值数据是有较好鲁棒性的评估期(注:可以住在结果的高强度值一个更用用的名字是---长尾).

脚本输出:

整个数据集得分 = 0.56
不包含有缺失值的记录的得分 = 0.48
经过缺失值填充之后的得分 = 0.57

在本案例中,缺失值填充能够帮助分类器的结果更接近原始分数.

# coding:utf-8
import numpy as np from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.model_selection import cross_val_score rng = np.random.RandomState(0) dataset = load_boston()
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1] #在没有缺失值的整个数据集上评估得分
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_full, y_full).mean()
print(u"整个数据集得分 = %.2f" % score)
# 在75%记录上添加确实值
missing_rate = 0.75
n_missing_samples = np.floor(n_samples * missing_rate)
missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples,
dtype=np.bool),
np.ones(n_missing_samples,
dtype=np.bool)))
rng.shuffle(missing_samples)
missing_features = rng.randint(0, n_features, n_missing_samples) # 在没有缺失值的记录上评估得分
X_filtered = X_full[~missing_samples, :]
y_filtered = y_full[~missing_samples]
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_filtered, y_filtered).mean()
print("不包含有缺失值的记录的得分 = %.2f" % score) #填充缺失值后评估得分
X_missing = X_full.copy()
X_missing[np.where(missing_samples)[0], missing_features] = 0
y_missing = y_full.copy()
estimator = Pipeline([("imputer", Imputer(missing_values=0,
strategy="mean",
axis=0)),
("forest", RandomForestRegressor(random_state=0,
n_estimators=100))])
score = cross_val_score(estimator, X_missing, y_missing).mean()
print("经过缺失值填充之后的得分 = %.2f" % score)

scikit-learn一般实例之六:构建评估器之前进行缺失值填充的更多相关文章

  1. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. Selenium2学习-036-WebUI自动化实战实例-034-JavaScript 在 Selenium 自动化中的应用实例之六(获取 JS 执行结果返回值)

    Selenium 获取 JavaScript 返回值非常简单,只需要在 js 脚本中将需要返回的数据 return 就可以,然后通过方法返回 js 的执行结果,方法源码如下所示: /** * Get ...

  6. redis 实例2 构建文章投票网站后端

    redis 实例2 构建文章投票网站后端   1.限制条件 一.如果网站获得200张支持票,那么这篇文章被设置成有趣的文章 二.如果网站发布的文章中有一定数量被认定为有趣的文章,那么这些文章需要被设置 ...

  7. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  8. 字的研究(3)fontTools-TrueType轮廓坐标的获取以及基于TrueType的Glyph实例的构建

    前言 本文主要介绍如果使用Python第三方库fontTools提取OpenType字体文件中的TrueType轮廓坐标以及如何构建基于TrueType的Glyph实例 TrueType轮廓坐标的获取 ...

  9. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

随机推荐

  1. [开发笔记] Graph Databases on developing

    TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...

  2. C#调用C++代码遇到的问题总结

    最近在开发服务后台的时候,使用c#调用了多个c++编写的dll,期间遇到了一系列的问题,经过一番努力最后都一一解决了,在此做个总结,方便以后参考,毕竟这些问题也都是很常见的,主要有以下问题: 类型对照 ...

  3. .NET应用程序域

    在.NET平台下,可执行程序并没有直接承载在Windows进程中,而非托管程序是直接承载的..NET可执行程序承载在进程的一个逻辑分区中,称之为应用程序域(AppDomain).一个进程可以包含多个应 ...

  4. 如何使用swing创建一个BeatBox

    首先,我们需要回顾一些内容(2017-01-04 14:32:14): 1.Swing组件 Swing的组件(component,或者称之为元件),是较widget更为正确的术语,它们就是会放在GUI ...

  5. CSS三个定位——常规、浮动、绝对定位

    .dage { width: 868px; background: #5B8C75; border: 10px solid #A08C5A; margin-top: -125px; margin-le ...

  6. Android Studio开发RecyclerView遇到的各种问题以及解决(二)

    开发RecyclerView时候需要导入别人的例子,我的是从github导入的,下载下github的压缩包之后解压看你要导入的文件是priject还是Module.(一般有app文件夹的大部分是pro ...

  7. Android Studio 编译单个module

    前期自己要把gradle环境变量配置好 在Terminal中gradle命令行编译apk 输入gradle assembleRelease 会编译全部module编译单个modulecd ./xiru ...

  8. AFN解析器里的坑

    AFN框架是用来用来发送网络请求的,它的好处是可以自动给你解析JSON数据,还可以发送带参数的请求AFN框架还可以监测当前的网络状态,还支持HTTPS请求,分别对用的类为AFNetworkReacha ...

  9. A/B Testing的简要知识

    A/B testing主要用来检测网站或者APP的两个版本中哪一个更好,它的中心思想是把流量一分为二,一份用作experiment group,访问新的版本,另一份用作control group,访问 ...

  10. 【月入41万】Mono For Android中使用百度地图SDK

    借助于Mono For Android技术,.Net开发者也可以使用自己熟悉的C#语言以及.Net来开发Android应用.由于Mono For Android把Android SDK中绝大部分类库都 ...