scikit-learn一般实例之六:构建评估器之前进行缺失值填充
本例将会展示对确实值进行填充能比简单的对样例中缺失值进行简单的丢弃能获得更好的结果.填充不一定能提升预测精度,所以请通过交叉验证进行检验.有时删除有缺失值的记录或使用标记符号会更有效.
缺失值可以被替换为均值,中值,或使用strategy超参数最高频值.中值是对于具有可以主宰的高强度值数据是有较好鲁棒性的评估期(注:可以住在结果的高强度值一个更用用的名字是---长尾).
脚本输出:
整个数据集得分 = 0.56
不包含有缺失值的记录的得分 = 0.48
经过缺失值填充之后的得分 = 0.57
在本案例中,缺失值填充能够帮助分类器的结果更接近原始分数.
# coding:utf-8
import numpy as np
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.model_selection import cross_val_score
rng = np.random.RandomState(0)
dataset = load_boston()
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1]
#在没有缺失值的整个数据集上评估得分
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_full, y_full).mean()
print(u"整个数据集得分 = %.2f" % score)
# 在75%记录上添加确实值
missing_rate = 0.75
n_missing_samples = np.floor(n_samples * missing_rate)
missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples,
dtype=np.bool),
np.ones(n_missing_samples,
dtype=np.bool)))
rng.shuffle(missing_samples)
missing_features = rng.randint(0, n_features, n_missing_samples)
# 在没有缺失值的记录上评估得分
X_filtered = X_full[~missing_samples, :]
y_filtered = y_full[~missing_samples]
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_filtered, y_filtered).mean()
print("不包含有缺失值的记录的得分 = %.2f" % score)
#填充缺失值后评估得分
X_missing = X_full.copy()
X_missing[np.where(missing_samples)[0], missing_features] = 0
y_missing = y_full.copy()
estimator = Pipeline([("imputer", Imputer(missing_values=0,
strategy="mean",
axis=0)),
("forest", RandomForestRegressor(random_state=0,
n_estimators=100))])
score = cross_val_score(estimator, X_missing, y_missing).mean()
print("经过缺失值填充之后的得分 = %.2f" % score)
scikit-learn一般实例之六:构建评估器之前进行缺失值填充的更多相关文章
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Selenium2学习-036-WebUI自动化实战实例-034-JavaScript 在 Selenium 自动化中的应用实例之六(获取 JS 执行结果返回值)
Selenium 获取 JavaScript 返回值非常简单,只需要在 js 脚本中将需要返回的数据 return 就可以,然后通过方法返回 js 的执行结果,方法源码如下所示: /** * Get ...
- redis 实例2 构建文章投票网站后端
redis 实例2 构建文章投票网站后端 1.限制条件 一.如果网站获得200张支持票,那么这篇文章被设置成有趣的文章 二.如果网站发布的文章中有一定数量被认定为有趣的文章,那么这些文章需要被设置 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 字的研究(3)fontTools-TrueType轮廓坐标的获取以及基于TrueType的Glyph实例的构建
前言 本文主要介绍如果使用Python第三方库fontTools提取OpenType字体文件中的TrueType轮廓坐标以及如何构建基于TrueType的Glyph实例 TrueType轮廓坐标的获取 ...
- sklearn中的模型评估-构建评估函数
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...
随机推荐
- 执行 $Gulp 时发生了什么 —— 基于 Gulp 的前端集成解决方案(二)
前言 文章 在windows下安装gulp —— 基于 Gulp 的前端集成解决方案(一) 中,已经完成对 gulp 的安装,由于是window环境,文中特意提到了可以通过安装 gitbash 来代替 ...
- 使用Oracle官方巡检工具ORAchk巡检数据库
ORAchk概述 ORAchk是Oracle官方出品的Oracle产品健康检查工具,可以从MOS(My Oracle Support)网站上下载,免费使用.这个工具可以检查Oracle数据库,Gold ...
- 学习ASP.NET Core, 怎能不了解请求处理管道[3]: 自定义一个服务器感受一下管道是如何监听、接收和响应请求的
我们在<服务器在管道中的"龙头"地位>中对ASP.NET Core默认提供的具有跨平台能力的KestrelServer进行了介绍,为了让读者朋友们对管道中的服务器具有更 ...
- Angular2开发笔记
Problem 使用依赖注入应该注意些什么 服务一般用来做什么 指令一般用来做什么 angular2如何提取公共组件 angular2为什么不需要提公共组件 父组件与子组件之间如何通讯 什么时候应该使 ...
- vue双向数据绑定原理探究(附demo)
昨天被导师叫去研究了一下vue的双向数据绑定原理...本来以为原理的东西都非常高深,没想到vue的双向绑定真的很好理解啊...自己动手写了一个. 传送门 双向绑定的思想 双向数据绑定的思想就是数据层与 ...
- AJAX 大全
本章内容: 简介 伪 AJAX 原生 AJAX XmlHttpRequest 的属性.方法.跨浏览器支持 jQuery AJAX 常用方法 跨域 AJAX JsonP CORS 简单请求.复制请求.请 ...
- arcgis api for js入门开发系列八聚合效果(含源代码)
上一篇实现了demo的图层控制模块,本篇新增聚合效果,截图如下(源代码见文章底部): 聚合效果实现的思路如下: 1.map.html引用聚合包,项目已经包含进来了的聚合文件夹: <script ...
- “此网页上的某个 Web 部件或 Web 表单控件无法显示或导入。找不到该类型,或该类型未注册为安全类型。”
自从vs装了Resharper,看见提示总是手贱的想去改掉它.于是乎手一抖,把一个 可视web部件的命名空间给改了. 喏,从LibrarySharePoint.WebPart.LibraryAddEd ...
- JDK安装与配置
JDK安装与配置 一.下载 JDK是ORACLE提供免费下载使用的,官网地址:https://www.oracle.com/index.html 一般选择Java SE版本即可,企业版的选择Java ...
- 什么是英特尔® Edison 模块?
英特尔® Edison 模块 是一种 SD 卡大小的微型计算芯片,专为构建物联网 (IoT) 和可穿戴计算产品而设计. Edison 模块内含一个高速的双核处理单元.集成 Wi-Fi*.蓝牙* 低能耗 ...