Pandas是用于数据操纵和分析,建立在Numpy之上的。Pandas为Python带来了两种新的数据结构:Pandas Series和Pandas DataFrame,借助这两种数据结构,我们能够轻松直观地处理带标签数据和关系数据。

Pandas功能:

  • 允许为行和列设定标签
  • 可以针对时间序列数据计算滚动统计学指标
  • 轻松处理NaN值
  • 能够将不同的数据集合并在一起
  • 与Numpy和Matplotlib集成

Pandas Series

Pandas series 是像数组一样的一维对象,可以存储很多类型的数据。Pandas series 和 Numpy array之间的主要区别之一是你可以为Pandas series 中的每个元素分配索引标签;另一个区别是Pandas series 可以同时存储不同类型的数据。

创建 Pandas Series

pd.Series(data, index)

 groceries = pd.Series(data=[30, 6, 'yes', 'No'], index=['eggs', 'apples', 'milk', 'bread'])
ser = pd.Series(data=[[0, 1, 2, 3], [1, 3, 5, 7], [2, 4, 6, 8]], index=(['a', 'b', 'c']))

查看 Pandas Series 属性

 # Pandas Series 元素数量
print(groceries.size)
# Pandas Series 形状
print(groceries.shape)
# Pandas Series 维度
print(groceries.ndim)
# Pandas Series 索引列表
print(groceries.index)
# Pandas Series 元素列表
print(groceries.values)

查看是否存在某个索引标签:in

 print('book' in groceries)

访问 Pandas Series 中元素

Pandas Series 提供了两个属性 .loc 和 .iloc

.loc 表明我们使用的是标签索引访问

.iloc 表明我们使用的是数字索引访问

 # 标签索引
print(groceries['eggs'])
print(groceries[['eggs', 'milk']])
# 数字索引
print(groceries[1])
print(groceries[[1, 2]])
print(groceries[-1])
# 明确标签索引
print(groceries.loc['milk'])
print(groceries.loc[['eggs', 'apples']])
# 明确数字索引
print(groceries.iloc[0])
print(groceries.iloc[[0, 1]])

修改和删除 Pandas Series 中元素

直接标签访问,值修改就可

 groceries['eggs'] = 2
print(groceries)

删除:drop(参数 1:lable,标签;参数 2:inplace=True/False,是/否修改原 Series)

 print(ser.drop(['b']))
print(ser.drop(['a', 'b'], inplace=True))

Pandas Series 中元素执行算术运算

Pandas Series执行元素级算术运算:加、减、乘、除

fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas'])
# 所有数字进行运算
print(fruits + 2)
print(fruits - 2)
print(fruits * 2)
print(fruits / 2)
# 所有元素应用Numpy中的数学函数
print(np.exp(fruits))
print(np.sqrt(fruits))
print(np.power(fruits, 2))
# 部分元素进行运算
print(fruits[0] - 2)
print(fruits['apples'] + 2)
print(fruits.loc['oranges'] * 2)
print(np.power(fruits.iloc[0], 2))

Pandas DataFrame

Pandas DataFrame 是具有带标签的行和列的二维数据结构,可以存储多种类型的数据,类似于电子表格。

创建 Pandas DataFrame

第一步:创建 Pandas Series 字典

第二步:将字典传递给 pd.DataFrame

 items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']),
'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])}
shopping_carts = pd.DataFrame(items)
print(shopping_carts)

通过关键字 columns 和 index 选择要将哪些数据放入 DataFrame 中

 shopping_cart = pd.DataFrame(items, index=['bike', 'pants'], columns=['Bob'])
print(shopping_cart)

访问、添加、删除 DataFrame

访问整列:dataframe[['column1', 'column2']]

 # 读取列
print(shopping_carts[['Bob', 'Alice']])

访问整行:dataframe.loc[['row1', 'row2']]

 # 读取行
print(shopping_carts.loc[['bike']])

访问某行某列:dataframe['column']['row'],先提供行标签,将出错。

 # 读取某一列某一行
print(shopping_carts['Bob']['bike'])

添加整列(末尾添加列),空值用 None

 # 添加列
shopping_carts['Mike'] = [10, 30, 10, 90, None]

添加整行(末尾添加行),把新添加行创建为 dataframe,通过 append() 添加

 # 添加行
new_items = [{'Alice': 30, 'Bob': 20, 'Mark': 35, 'Mike': 50}]
new_store = pd.DataFrame(new_items, index=['store3'])
shopping_carts = shopping_carts.append(new_store)

只能删除整列:pop('lable')

 # 删除整列
shopping_carts.pop('Jey')

删除行或者列:drop(['lable1', 'lable2'], axis=0/1)  0表示行,1表示列

 # 删除行
shopping_carts = shopping_carts.drop(['store3', 'watch'], axis=0)

更改行和列标签

rename()

 # 更改列标签
shopping_carts = shopping_carts.rename(columns={'Bob': 'Jey'})
# 更改行标签
shopping_carts = shopping_carts.rename(index={'bike': 'hats'})

处理 NaN

统计 NaN 数量:isnull().sum().sum

 # 数值转化为 True 或者 False
print(store_items.isnull())
# 每一列的 NaN 的数量
print(store_items.isnull().sum())
# NaN 总数
print(store_items.isnull().sum().sum())

统计非 NaN 数量:count(axis=0/1)

 # 每一行非 NaN 的数量,通过列统计
print(store_items.count(axis=1))
# 每一列非 NaN 的数量,通过行统计
print(store_items.count(axis=0))

删除具有NaN值的行和列:dropna(axis=0/1, inplace=True/False)  inplace默认False,原始DataFrame不会改变;inplace为True,在原始DataFrame删除行或者列

 # 删除包含NaN值的任何行
store_items.dropna(axis=0)
# 删除包含NaN值的任何列
store_items.dropna(axis=1, inplace=True)

将 NaN 替换合适的值:fillna()

 # 将所有 NaN 替换为 0
store_items.fillna(value=0)
# 前向填充:将 NaN 值替换为 DataFrame 中的上个值,axis决定列或行中的上个值
store_items.fillna(method='ffill', axis=1)
# 后向填充:将 NaN 值替换为 DataFrame 中的下个值,axis决定列或行中的下个值
store_items.fillna(method='backfill', axis=0)

加载数据

csv 格式文件,每一行都是用逗号隔开:read_csv()

 # 读取 csv 文件,第一行作为列标签
data = pd.read_csv('data.csv')
print(data)
print(data.shape)
print(type(data))

读取前 N 行数据:head(N)

 # 读取头 3 行数据
print(data.head(3))

读取最后 N 行数据:tail(N)

 # 读取后 5 行数据
print(data.tail(5))

检查是否有任何列包含 NaN 值:isnull().any()  类型 bool

 # 检查任何列是否有 NaN 值,返回值:bool
print(data.isnull().any())

数据集的统计信息:describe()

 # 获取 DataFrame 每列的统计信息:count,mean,std,min,25%,50%,75%,max
# 25%:四分之一位数;50%:中位数;75%:四分之三位数
print(data.describe())
# 通过统计学函数查看某个统计信息
print(data.max())
print(data.median())

数据相关性:不同列的数据是否有关联,1 表明关联性很高,0 表明数据不相关。corr()

 # 数据相关性
print(data.corr())

数据分组:groupby(['lable1', 'lable2'])

 # 按年份分组,统计总薪资
data.groupby(['Year'])['Salary'].sum()
# 按年份分组,统计平均薪资
data.groupby(['Year'])['Salary'].mean()
# 按年份,部门分组,统计总薪资
data.groupby(['Year', 'Department'])['Salary'].sum()

Python常用库之二:Pandas的更多相关文章

  1. 2,Python常用库之二:Pandas

    Pandas是用于数据操纵和分析,建立在Numpy之上的.Pandas为Python带来了两种新的数据结构:Pandas Series和Pandas DataFrame,借助这两种数据结构,我们能够轻 ...

  2. python 常用库整理

    python 常用库整理 GUI 图形界面 Tkinter: Tkinter wxPython:wxPython pyGTK:PyGTK pyQt:pyQt WEB框架 django:django w ...

  3. Python常用库整理

    Python常用库整理 Python中到底有哪些库会让程序员爱不释手?以至于一次上瘾,造成永久性伤害(这句话好像在哪里见过),今天我们就来整理一番这样的库,欢迎各位在评论区或者私信我添加或者修改相关库 ...

  4. python常用库安装网址

    python常用库安装网址如下: http://pypi.python.org/pypi

  5. windows下python常用库的安装

    windows下python常用库的安装,前提安装了annaconda 的python开发环境.只要已经安装了anaconda,要安装别的库就很简单了.只要使用pip即可,正常安装好python,都会 ...

  6. python常用库

    本文由 伯乐在线 - 艾凌风 翻译,Namco 校稿.未经许可,禁止转载!英文出处:vinta.欢迎加入翻译组. Awesome Python ,这又是一个 Awesome XXX 系列的资源整理,由 ...

  7. Python常用库大全

    环境管理 管理 Python 版本和环境的工具 p – 非常简单的交互式 python 版本管理工具. pyenv – 简单的 Python 版本管理工具. Vex – 可以在虚拟环境中执行命令. v ...

  8. Python常用库大全,看看有没有你需要的

    作者:史豹链接:https://www.zhihu.com/question/20501628/answer/223340838来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  9. python常用库(转)

    转自http://www.west999.com/info/html/wangluobiancheng/qita/20180729/4410114.html Python常用的库简单介绍一下 fuzz ...

随机推荐

  1. WPF实现夜间模式

    背景 项目中设计了一个黑色主题,稍加改正也可作为夜间模式,效果图如下: 原理 由于项目中存在地图,而地图完全是由位图组成,不能直接改变背景色,所以我在内容上面放置了一个黑色的Border作为遮罩.可通 ...

  2. 经典的SQL面试题及答案

    ​ ​ ​ ​ ​ ​​​​​ ​ ​​​​​​​​

  3. 2019-1-19 object祖宗类的equals重写

    package com.test; /** * object祖宗类的equals重写 * @author Mr.kemi *2019-1-19 */ public class Equals { pri ...

  4. jetbrains激活 webstorm激活 webstorm激活码

    License Activation的破解方式无效时,请采用以下方法1. 把下载的破解补丁放在你的idea的安装目录下的bin的目录下面(如下图所示),本文示例为C:\Program Files\Je ...

  5. 判断有几个checkbox被选中

    //判断是否有选中的checkbox的值是否为空 var number = $("input[type='checkbox']:checked").length; if(numbe ...

  6. 说说JSON和JSONP区别

    前言 由于Sencha Touch 2这种开发模式的特性,基本决定了它原生的数据交互行为几乎只能通过AJAX来实现. 当然了,通过调用强大的PhoneGap插件然后打包,你可以实现100%的Socke ...

  7. 洛谷P5057 [CQOI2006]简单题(线段树)

    题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...

  8. Mac Iterm 或者自带终端 bogon:~ username$

    mac 在用Iterm2 遇到命令行前缀自带 bogon:~ username$ 太长问题.有代码洁癖的我,终于找到了解决办法. 具体问题见下图: 而我想要的结果是: 解决办法:是安装 Oh My Z ...

  9. Mongodb安装详解及mongochef视图工具安装。

    按照国际惯例我们先来介绍一下MongoDB. MongoDB是一个基于分布式文件存储的数据库,由c++语言编写,为WEB应用提供可扩展的高性能数据存储解决方案.MongoDB属于非关系数据库,也不能说 ...

  10. 使用OmniGraffle创建流程图

    Mac下使用OmniGraffle创建是一个不错的选择 可以保存为OG格式,可以导出为VXD格式供visio使用