A Famous Stone Collector

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 793    Accepted Submission(s): 292

Problem Description
Mr. B loves to play with colorful stones. There are n colors of stones in his collection. Two stones with the same color are indistinguishable. Mr. B would like to
select some stones and arrange them in line to form a beautiful pattern. After several arrangements he finds it very hard for him to enumerate all the patterns. So he asks you to write a program to count the number of different possible patterns. Two patterns are considered different, if and only if they have different number of stones or have different colors on at least one position.
 
Input
Each test case starts with a line containing an integer n indicating the kinds of stones Mr. B have. Following this is a line containing n integers - the number of
available stones of each color respectively. All the input numbers will be nonnegative and no more than 100.
 
Output
For each test case, display a single line containing the case number and the number of different patterns Mr. B can make with these stones, modulo 1,000,000,007,
which is a prime number.
 
Sample Input
3
1 1 1
2
1 2
 
Sample Output
Case 1: 15
Case 2: 8

Hint

In the first case, suppose the colors of the stones Mr. B has are B, G and M, the different patterns Mr. B can form are: B; G; M; BG; BM; GM; GB; MB; MG; BGM; BMG; GBM; GMB; MBG; MGB.

 
Source
 
Recommend
 
题意:给n种石头,每种m个。
        求组成长度 小于等于k的全排列的个数。
解题思路:
 
别人的思路:
  dp[ i ][ j ]表示:考虑前i种石头构成的长度为j的序列的个数。
  转台转移方程:
    dp[ i ][ j ] = dp[ i-1 ][ j ];   //未放入第i种颜色的石头
    for  k := 1 ~ min( j , s[ i ] )  //放入k个第i种颜色的石头
      dp[ i ][ j ] += dp[ i-1 ][ j - k ] * C[ j ][ k ]; //!!!
      Cnm = Cn-1m-1 + Cn-1 1
   其中C[ n ][ m ]表示组合数。
 
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef __int64 LL;
const LL mod=; LL a[];
LL cnm[][];
LL dp[][];
void Init()
{
LL i,j;
for(i=;i<=;i++)
cnm[i][]=;
for(i=;i<=;i++)
{
for(j=;j<=i&&j<=;j++)
{
if(i==j) cnm[i][j]=;
else cnm[i][j]=( cnm[i-][j]+cnm[i-][j-] )%mod;
}
}
}
void solve(LL n)
{
LL i,j,s,Sum=,k;
memset(dp,,sizeof(dp));
for(i=;i<=;i++)
dp[i][]=;
for(i=,s=;i<=n;i++)
{
s=s+a[i];
for(j=;j<=s;j++)
{
dp[i][j]=dp[i-][j];
for(k=;k<=a[i];k++)
if(k<=j)
dp[i][j]=( dp[i][j]+(cnm[j][k]*dp[i-][j-k])%mod )%mod;
if(i==n) Sum=(Sum+dp[i][j])%mod;
}
}
printf("%I64d\n",Sum);
}
int main()
{
LL T=;
LL i,n;
Init();
while(scanf("%I64d",&n)>)
{
for(i=;i<=n;i++)
scanf("%I64d",&a[i]);
printf("Case %I64d: ",++T);
solve(n);
}
return ;
}

HDU 4248 A Famous Stone Collector 组合数学dp ****的更多相关文章

  1. [ACM] hdu 4248 A Famous Stone Collector (DP+组合)

    A Famous Stone Collector Problem Description Mr. B loves to play with colorful stones. There are n c ...

  2. hdu 4248 A Famous Stone Collector

    首先发现一个很头痛的问题,下面是2个求排列组合的代码 memset(C,,sizeof(C)); ;i<;i++) { C[i][]=; ;j<=;j++) C[i][j]=(C[i-][ ...

  3. HDOJ 4248 A Famous Stone Collector DP

    DP: dp[i][j]前i堆放j序列长度有多少行法, dp[i][j]=dp[i-1][j] (不用第i堆), dp[i][j]+=dp[i-1][j-k]*C[j][k] (用第i堆的k个石头) ...

  4. HDU 4249 A Famous Equation(数位DP)

    题目链接:点击打开链接 思路:用d[i][a][b][c][is]表示当前到了第i位, 三个数的i位各自是a,b,c, 是否有进位 , 的方法数. 细节參见代码: #include<cstdio ...

  5. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  6. hdu 5025 Saving Tang Monk 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092939.html 题目链接:hdu 5025 Saving Tang Monk 状态压缩 ...

  7. hdu 5996 dingyeye loves stone(博弈)

    题目链接:hdu 5996 dingyeye loves stone 题意: 给你一棵树,树的每一个节点有a[i]个石子,每个人可以将这个节点的石子移向它的父亲,如果没有合法操作,那么就算输,现在给你 ...

  8. HDU 3341 Lost's revenge AC自动机+dp

    Lost's revenge Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)T ...

  9. HDU 2457 DNA repair(AC自动机+DP)题解

    题意:给你几个模式串,问你主串最少改几个字符能够使主串不包含模式串 思路:从昨天中午开始研究,研究到现在终于看懂了.既然是多模匹配,我们是要用到AC自动机的.我们把主串放到AC自动机上跑,并保证不出现 ...

随机推荐

  1. eclipse打包jar文件

    论文仿真做线性回归分类在人脸识别中应用与研究,在单机下实现LRC算法后,又在Hadoop云平台下实现了该算法.在比较实验结果时候需要放在相同硬件条件下比较.但是LRC单机算法是在windows下的ec ...

  2. ORACLE Sequence 自增长

    Sequence是数据库系统按照一定规则自动增加的数字序列.这个序列一般作为代理主键(因为不会重复),没有其他任何意义. Sequence是数据库系统的特性,有的数据库有Sequence,有的没有.比 ...

  3. Centos7 DNS神奇的配置

    文件 [root@iff etc]# cat /etc/named.conf // // named.conf // // Provided by Red Hat bind package to co ...

  4. Bootstrap-datepicker日期时间选择器的简单使用

    日期时间选择器 目前,bootstrap有两种日历.datepicker和datetimepicker,后者是前者的拓展. Bootstrap日期和时间组件: 使用示例: 从左到右依次是十年视图.年视 ...

  5. [性能测试]:关于消费类ISO8583协议脚本的开发

    一,要发送的报文,转化成16进制的,报文如下 "\x01\x52"//报文长度338 "\x60\x00\x24\x00\x00"//TPDU "\x ...

  6. *args and **kwargs

    首先要知道, 并不是必须写成*args 和**kwargs. 只有变量前面的 *(星号)才是必须的. 你也可以写成*var 和**vars. 而写成*args 和**kwargs只是一个通俗的命名约定 ...

  7. 四、OE 中添加对供应商名称的唯一限制

    最初的思路是利用sql_constraints 来限制重复的供应商名称,但后来想到在OE中供应商.客户乃至员工都隶属于Partner,sql_constrainst实际上是通过限制partner来限制 ...

  8. redux概念介绍

    这一部分仅仅介绍react基本的概念,因为react不仅仅可以用在react中,还可以用在其他框架甚至原生 js 中.  所以这里只介绍通用的概念. redux使用场景 redux和vue中的vuex ...

  9. PHP 浮点数 转化 整数方法对比 ceil,floor,round,intval,number_format

    ceil,floor,round,intval,number_format - 执行1000W此效率对比 Header("Content-Type:text/html;charset=utf ...

  10. 【数组】word search

    题目: Given a 2D board and a word, find if the word exists in the grid. The word can be constructed fr ...