Codechef:Fibonacci Number/FN(二次剩余+bsgs)
题面
前置芝士
\(bsgs\),\(Cipolla\)
题解
因为题目保证\(p\bmod 10\)是完全平方数,也就是说\(p\bmod 5\)等于\(1\)或\(-1\),即\(5\)是模\(p\)的二次剩余(法老讲过,我忘了为啥了……)
然后我们需要用\(Cipolla\)求出\(c=\sqrt{5}\),并记\(p={1+c\over 2}\)
用斐波那契数列的通项公式代入,方程可以变为
\]
解得
\]
我们枚举一下\(n\)的奇偶性,开根可以用\(Cipolla\)处理,然后用\(bsgs\)解得\(n\)就可以了
//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x7fffffff
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
int P;
inline int add(R int x,R int y){return 0ll+x+y>=P?0ll+x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int w,a;
struct cp{
int x,y;
inline cp(R int _x,R int _y):x(_x),y(_y){}
inline cp operator *(const cp &b)const{
return cp(add(mul(x,b.x),mul(w,mul(y,b.y))),add(mul(x,b.y),mul(y,b.x)));
}
};
int ksm(R cp x,R int y){
R cp res(1,0);
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res.x;
}
int Sqrt(int x){
if(!x)return 0;
if(ksm(x,(P-1)>>1)==P-1)return -1;
while(true){
a=mul(rand(),rand()),w=dec(mul(a,a),x);
if(ksm(w,(P-1)>>1)==P-1)return ksm(cp(a,1),(P+1)>>1);
}
}
const int N=262144;
struct Hash{
struct eg{int v,nx,w;}e[N];int head[N],tot;
inline void clr(){memset(head,0,sizeof(head)),tot=0;}
inline void add(R int v,R int w){e[++tot]={v,head[v&262143],w},head[v&262143]=tot;}
int query(int x){
go(x&262143)if(v==x)return e[i].w;
return -1;
}
}mp[2];
int bsgs(int x,int v,int sgn){
int m=sqrt(P)+1;mp[0].clr(),mp[1].clr();
for(R int i=1,res=mul(v,x);i<=m;++i,res=mul(res,x))mp[i&1].add(res,i);
for(R int i=1,tmp=ksm(x,m),res=tmp;i<=m;++i,res=mul(res,tmp))
if(mp[(i*m)&1^sgn].query(res)!=-1)return i*m-mp[(i*m)&1^sgn].query(res);
return inf;
}
int c,s,p,inv2,res,rt;
int main(){
srand(time(NULL));
// freopen("testdata.in","r",stdin);
for(int T=read();T;--T){
c=read(),P=read(),s=Sqrt(5),inv2=(P+1)>>1,p=mul(s+1,inv2),c=mul(c,s);
res=inf;
rt=Sqrt((1ll*c*c+4)%P);
if(rt!=-1){
cmin(res,bsgs(p,mul(add(c,rt),inv2),0)),
cmin(res,bsgs(p,mul(dec(c,rt),inv2),0));
}
rt=Sqrt((1ll*c*c+P-4)%P);
if(rt!=-1){
cmin(res,bsgs(p,mul(add(c,rt),inv2),1)),
cmin(res,bsgs(p,mul(dec(c,rt),inv2),1));
}
printf("%d\n",res==inf?-1:res);
}
return 0;
}
Codechef:Fibonacci Number/FN(二次剩余+bsgs)的更多相关文章
- Codechef:Fibonacci Number/FN——求通项+二次剩余+bsgs
题意 定义 $F_n$ 为 $$F_n = \left\{\begin{matrix}0, n=0\\ 1, n=1 \\F_{n-1} + F_{n-2}, n > 1\end{matrix} ...
- Fibonacci number
https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Moc ...
- fibonacci number & fibonacci sequence
fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...
- Buge's Fibonacci Number Problem
Buge's Fibonacci Number Problem Description snowingsea is having Buge’s discrete mathematics lesson, ...
- [UCSD白板题] The Last Digit of a Large Fibonacci Number
Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...
- [UCSD白板题 ]Small Fibonacci Number
Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...
- (斐波那契总结)Write a method to generate the nth Fibonacci number (CC150 8.1)
根据CC150的解决方式和Introduction to Java programming总结: 使用了两种方式,递归和迭代 CC150提供的代码比较简洁,不过某些细节需要分析. 现在直接运行代码,输 ...
- 求四百万以内Fibonacci(number)数列偶数结果的总和
又对啦...开心~~~~ 只是代码可能不符合PEP标准什么的... Each new term in the Fibonacci sequence is generated by adding the ...
- Algorithms - Fibonacci Number
斐波那契数列(Fibonacci Number)从数学的角度是以递归的方法定义的: \(F_0 = 0\) \(F_1 = 1\) \(F_n = F_{n-1} + F_{n-2}\) (\(n \ ...
随机推荐
- 关于std:auto_ptr std:shared_ptr std:unique_ptr
很多人听说过标准auto_ptr智能指针机制,但并不是每个人都天天使用它.这真是个遗憾,因为auto_ptr优雅地解决了C++设计和编码中常见的问题,正确地使用它可以生成健壮的代码.本文阐述了如何正确 ...
- editplus 链接FTP失败,超时
最近在用editplus链接服务器是出现了超时连接不上的情况 检查后发现FTP配置没问题 后来打开高级设置后发现没有配置端口号 配置后登陆成功
- 词项邻近 & 停用词 & 词干还原
[词项邻近] 邻近操作符(proximity)用于指定查询中的两个词项应该在文档中互相靠近,靠近程度通常采用两者之间的词的个数或者是否同在某个结构单元(如句 子或段落)中出现来衡量. [停用词] 一些 ...
- 面试概率极大的Oracle存储过程
1.什么是存储过程.存储过程是数据库服务器端的一段程序,它有两种类型.一种类似于SELECT查询,用于检索数据,检索到的数据能够以数据集的形式返回给客户.另一种类似于INSERT或DELETE查询,它 ...
- Kafka学习之四 Kafka常用命令
Kafka常用命令 以下是kafka常用命令行总结: 1.查看topic的详细信息 ./kafka-topics.sh -zookeeper 127.0.0.1:2181 -describe -top ...
- firstpage 2015/5/21
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="firstPage.aspx ...
- myeclipse 快捷键,从步骤开始的大括号定位到匹配方法结束的大括号
myeclipse 快捷键,从方法开始的大括号定位到匹配方法结束的大括号转至匹配的括号 Ctrl+Shift+P ctr+shift+r 文件名搜索文件 ctr+h 搜索文件里 ...
- 20155209 2016-2017-2 《Java程序设计》第七周学习总结
20155209 2016-2017-2 <Java程序设计>第七周学习总结 教材学习内容总结 认识时间与日期 时间的度量 GMT(Greenwich Mean Time) 时间:现在不是 ...
- WebAPI请求(转)
出处:http://www.cnblogs.com/babycool/p/3922738.html 继续接着上文 ASP.NET MVC学习系列(一)-WebAPI初探 来看看对于一般前台页面发起的g ...
- Docker 基本原理
1 什么是Docker? Docker是基于Go语言实现的云开源项目.Docker的主要目标是“Build,Ship and Run Any App,Anywhere”,也就是通过对应用组件的封装.分 ...