单调递增子序列(二)

时间限制:1000 ms  |  内存限制:65535 KB
难度:4
描述

给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度。

如:1 9 10 5 11 2 13的最长单调递增子序列是1 9 10 11 13,长度为5。

输入
有多组测试数据(<=7)
每组测试数据的第一行是一个整数n表示序列中共有n个整数,随后的下一行里有n个整数,表示数列中的所有元素.每个整形数中间用空格间隔开(0<n<=100000)。
数据以EOF结束 。
输入数据保证合法(全为int型整数)!
输出
对于每组测试数据输出整形数列的最长递增子序列的长度,每个输出占一行。
样例输入
7
1 9 10 5 11 2 13
2
2 -1
样例输出
5
1
常规方法,会超时的,AC代码一:
#include<stdio.h>
#include<string.h>
int main()
{
int b[],a[];
int i,j,n,t,max;
while(scanf("%d",&t)!=EOF)
{ max=;
memset(b,,sizeof(b));
for(i=;i<t;i++)
scanf("%d",&a[i]);
b[] = a[];
for(i = , j = ; i < t; i++)
{ if(a[i]> b[j-])//判断如果出现后面的有大于前面的数就保存起来;
b[j++] = a[i];//保存的同时,j的值也在不断的增大,当保存到最后,j的值就是最后的最大长度了;
else{
for(int k = ; k < j; k++)
{
if(a[i] < b[k]){
b[k] = a[i];
break;
}
}
}
}
printf("%d\n",j);
}
return ;
}

AC代码二:

 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int dp[];
int main()
{
int i,a,t,k,j,n,mm;
while(scanf("%d",&n)!=EOF)
{ k=;memset(dp,,sizeof(dp));mm=;
cin>>dp[];
for(i=;i<n;i++)
{
scanf("%d",&a);
if(a<dp[])
dp[]=a;
else if(a>dp[k-])
dp[k++]=a;
else
{
for(j=;j<k;j++)
{
if(a<dp[j] && a>dp[j-])
{dp[j]=a;break;}
else if(a<dp[j])
break;
}
}
}
cout<<k<<endl;
}
return ; }

超时的代码:

#include<stdio.h>
#include<string.h>
//int b[100010]={0};
int main()
{
int a[],b[];
int i,j,n,t,max;
while(scanf("%d",&t)!=EOF)
{max=;
memset(b,,sizeof(b));
scanf("%d",&a[]);
for(i=;i<t;i++)
{
scanf("%d",&a[i]);
for(j=;j<i;j++)
if(a[i]>a[j] && b[j]+>b[i])
b[i]++;
// printf("%d ",b[i]);
if(b[i]>max)
max=b[i];
}
/*for(i=0;i<t;i++)
{if(b[i]>max)
max=b[i];
}*/
printf("%d\n",max+);
}
return ;
}

ny214 单调递增子序列(二) 动态规划的更多相关文章

  1. nyist oj 214 单调递增子序列(二) (动态规划经典)

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描写叙述 ,a2...,an}(0<n<=100000).找出单调递增最长子序列,并求出其长度 ...

  2. nyoj 单调递增子序列(二)

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长 ...

  3. nyoj 214 单调递增子序列(二)

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 ,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度. ...

  4. nyoj 214——单调递增子序列(二)——————【二分搜索加dp】

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长 ...

  5. nyoj_214_单调递增子序列(二)_201403182131

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长 ...

  6. nyoj 214 单调递增子序列(二) 【另类dp】

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描写叙述 ,a2...,an}(0<n<=100000),找出单调递增最长子序列.并求出其长度 ...

  7. NYOJ-214 单调递增子序列(二) AC 分类: NYOJ 2014-01-31 08:06 233人阅读 评论(0) 收藏

    #include<stdio.h> #include<string.h> int len, n, i, j; int d[100005], a[100005]; int bin ...

  8. NYOJ-214 单调递增子序列(二) TLE 分类: NYOJ 2014-01-28 22:57 171人阅读 评论(0) 收藏

    #include<stdio.h> #include<stdlib.h> #define max(x,y) x>y?x:y #define MAXX 100005 int ...

  9. nyoj--214--单调递增子序列(二)(二分查找+LIS)

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序 ...

随机推荐

  1. java之八大排序

    的关系:  1.直接插入排序 (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数 也是排好顺序的.如此反 ...

  2. filezilla

    中文网站:https://www.filezilla.cn/ 英文网站:https://filezilla-project.org/ FileZilla 客户端是一个快速可靠的.跨平台的FTP,FTP ...

  3. Fail Fast and Fail Safe Iterators in Java

    https://www.geeksforgeeks.org/fail-fast-fail-safe-iterators-java/ Fail Fast and Fail Safe Iterators ...

  4. eclipse svn插件

      eclipse svn插件 CreateTime--2018年4月22日23:09:42 Author:Marydon 下载地址:eclipse svn插件 将svn插件目录直接拷贝到eclips ...

  5. /etc/fstab 参数详解(转)

    转自:http://blog.csdn.net/duyiwuer2009/article/details/8644753/ /dev/hda5       /home/new              ...

  6. android的download manager(1)

    android 2.3中引入了Download manager.作为一个service来优化长时间下载操作的处理.Download Manager通过处理HTTP链接.监控链接的变化和系统又一次启动来 ...

  7. Python知识总结(二)

    一.import和reload和__import__ import是一个关键字,只引入一次 reload是一个函数,参数为一个字符串,它总是会重新引入 __import__是一个函数,与import关 ...

  8. ubuntu(14.04版本) 配置虚拟环境(一个ip对应多个域名)

    以下操作是建立在apahce安装成功的情况下 1.配置本地的host. 假设虚拟主机上的ip是:192.168.1.51,那么客户端本地的host可以配置成:

  9. FA_手工明细增加固定资产(流程)

    2014-06-08 Created By BaoXinjian

  10. GL_子模组过账至总账通过SLA修改会计方法改变科目(案列)

    2014-06-02 BaoXinjian