转载自:http://blog.csdn.net/wo334499/article/details/51689549

RDD

优点:

  1. 编译时类型安全 
    编译时就能检查出类型错误
  2. 面向对象的编程风格 
    直接通过类名点的方式来操作数据

缺点:

  1. 序列化和反序列化的性能开销 
    无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化.
  2. GC的性能开销 
    频繁的创建和销毁对象, 势必会增加GC
 
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext} object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc) /**
* id age
* 1 30
* 2 29
* 3 21
*/
case class Person(id: Int, age: Int)
val idAgeRDDPerson = sc.parallelize(Array(Person(1, 30), Person(2, 29), Person(3, 21))) // 优点1
// idAge.filter(_.age > "") // 编译时报错, int不能跟String比 // 优点2
idAgeRDDPerson.filter(_.age > 25) // 直接操作一个个的person对象
}
}

DataFrame

DataFrame引入了schema和off-heap

  • schema : RDD每一行的数据, 结构都是一样的. 这个结构就存储在schema中. Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了.

  • off-heap : 意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作.

off-heap就像地盘, schema就像地图, Spark有地图又有自己地盘了, 就可以自己说了算了, 不再受JVM的限制, 也就不再收GC的困扰了.

通过schema和off-heap, DataFrame解决了RDD的缺点, 但是却丢了RDD的优点. DataFrame不是类型安全的, API也不是面向对象风格的.

 
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
/**
* id age
* 1 30
* 2 29
* 3 21
*/
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)
// API不是面向对象的
idAgeDF.filter(idAgeDF.col("age") > 25)
// 不会报错, DataFrame不是编译时类型安全的
idAgeDF.filter(idAgeDF.col("age") > "")
}
}

DataSet

DataSet结合了RDD和DataFrame的优点, 并带来的一个新的概念Encoder

当序列化数据时, Encoder产生字节码与off-heap进行交互, 能够达到按需访问数据的效果, 而不用反序列化整个对象. Spark还没有提供自定义Encoder的API, 但是未来会加入.

下面看DataFrame和DataSet在2.0.0-preview中的实现

下面这段代码, 在1.6.x中创建的是DataFrame

 
// 上文DataFrame示例中提取出来的
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)

但是同样的代码在2.0.0-preview中, 创建的虽然还叫DataFrame

 
// sqlContext.createDataFrame(idAgeRDDRow, schema) 方法的实现, 返回值依然是DataFrame
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = {
sparkSession.createDataFrame(rowRDD, schema)
}

但是其实却是DataSet, 因为DataFrame被声明为Dataset[Row]

package object sql {
// ...省略了不相关的代码 type DataFrame = Dataset[Row]
}

因此当我们从1.6.x迁移到2.0.0的时候, 无需任何修改就直接用上了DataSet.

下面是一段DataSet的示例代码

 
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object Test {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local") // 调试的时候一定不要用local[*]
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._ val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) // 在2.0.0-preview中这行代码创建出的DataFrame, 其实是DataSet[Row]
val idAgeDS = sqlContext.createDataFrame(idAgeRDDRow, schema) // 在2.0.0-preview中, 还不支持自定的Encoder, Row类型不行, 自定义的bean也不行
// 官方文档也有写通过bean创建Dataset的例子,但是我运行时并不能成功
// 所以目前需要用创建DataFrame的方法, 来创建DataSet[Row]
// sqlContext.createDataset(idAgeRDDRow) // 目前支持String, Integer, Long等类型直接创建Dataset
Seq(1, 2, 3).toDS().show()
sqlContext.createDataset(sc.parallelize(Array(1, 2, 3))).show()
}
}

spark的数据结构 RDD——DataFrame——DataSet区别的更多相关文章

  1. APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL

    What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...

  2. sparkSQL中RDD——DataFrame——DataSet的区别

    spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型 ...

  3. java spark list 转为 RDD 转为 dataset 写入表中

    package com.example.demo; import java.util.ArrayList; import java.util.Arrays; import java.util.Hash ...

  4. spark rdd df dataset

    RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有parti ...

  5. RDD, DataFrame or Dataset

    总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.Da ...

  6. Spark(十六)DataSet

    Spark最吸引开发者的就是简单易用.跨语言(Scala, Java, Python, and R)的API. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset ...

  7. Spark提高篇——RDD/DataSet/DataFrame(一)

    该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD ...

  8. Spark提高篇——RDD/DataSet/DataFrame(二)

    该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 该篇主要介绍DataSet与DataFrame. 一.生成DataFrame ...

  9. Spark SQL 之 RDD、DataFrame 和 Dataset 如何选择

    引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用 ...

随机推荐

  1. zookeeper报错 JAVA_HOME is not set

    很多开发者安装zookeeper的时候,应该会发现到这么一个问题: JAVA_HOME is not set 好的!那么这个是什么意思呢? 就是说你的  JAVA_HOME 变量没有设定 为什么会提示 ...

  2. HBase 文件读写过程描述

    HBase 数据读写过程描述 我们熟悉的在 Hadoop 使用的文件格式有许多种,例如: Avro:用于 HDFS 数据序序列化与 Parquet:常见于 Hive 数据文件保存在 HDFS中 HFi ...

  3. CH4402 小Z的袜子(莫队)

    描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编号, ...

  4. Python - 入门基础(一)

    1.解释器路径 #!/usr/bin/env python 2.编码 # -*- coding:utf8 -*- 1.ascill ---00000000  (8个位表示) 缺点:表示不了英文 2.u ...

  5. windbg调试虚拟机XP系统

    一.先介绍一下被调试的虚拟机系统环境: 虚拟机:vmware workstation 10.0版本 虚拟机操作系统: Microsoft windows xp professional 2002 se ...

  6. ubuntu系统部署python3.6.4

    Ubuntu的版本为16.04,系统自带的Python版本较低,使用亲本版本3.6.4,下为安装步骤: 一.官网下载Python3.6.4版本 新建目录: sudo mkidr /usr/local/ ...

  7. C++ —— 类中static和const关键字声明变量的初始化方式总结

    在类中声明变量/常量时,经常会用到static.const关键字.对于该变/常量的初始化问题,网上有许多相关文章,但是大多不够完善,或者存在错误.经过实际验证,总结如下: (注明:测试编译平台为VS2 ...

  8. 从零开始一个http服务器(六)-多路复用和压力测试

    从零开始一个http服务器(六)-多路复用和压力测试 代码地址 : https://github.com/flamedancer/cserver git checkout step6 运行: make ...

  9. 20155304 2016-2017-2 《Java程序设计》实验二 Java面向对象程序设计

    实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验要求 没有Linux ...

  10. # 20155308 2016-2017-2《Java程序设计》课堂实践项目 5月17日

    20155308 2016-2017-2<Java程序设计>课堂实践项目 5/17 本次因为git出现了问题,所以没有按时提交我的代码 问题一 在IDEA中对P145 MathTool.j ...