Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp
1 second
256 megabytes
standard input
standard output
We all know that GukiZ often plays with arrays.
Now he is thinking about this problem: how many arrays a, of length n, with non-negative elements strictly less then 2l meet the following condition:
? Here operation
means bitwise AND (in Pascalit is equivalent to and, in C/C++/Java/Python it is equivalent to &), operation
means bitwise OR (in Pascal it is equivalent to
, in C/C++/Java/Python it is equivalent to |).
Because the answer can be quite large, calculate it modulo m. This time GukiZ hasn't come up with solution, and needs you to help him!
First and the only line of input contains four integers n, k, l, m (2 ≤ n ≤ 1018, 0 ≤ k ≤ 1018, 0 ≤ l ≤ 64, 1 ≤ m ≤ 109 + 7).
In the single line print the number of arrays satisfying the condition above modulo m.
2 1 2 10
3
2 1 1 3
1
3 3 2 10
9
In the first sample, satisfying arrays are {1, 1}, {3, 1}, {1, 3}.
In the second sample, only satisfying array is {1, 1}.
In the third sample, satisfying arrays are {0, 3, 3}, {1, 3, 2}, {1, 3, 3}, {2, 3, 1}, {2, 3, 3}, {3, 3, 0}, {3, 3, 1}, {3, 3, 2}, {3, 3, 3}.
思路:首先看到或,并就想将这个数拆开为二进制的01串,分别考虑每一位的0,1;
当前k的那个位置为0时,表示a1-an中没有两个相邻的1;
同理,当前k为为1时,表示a1-an中有两个相邻的1;2^n,减去0的方案即是;
刚刚开始一直在想组合数学的求法,发现不好写(。。。我也不会)
后来发现dp可以做,但是n很大;
dp方程:dp[i][0]=dp[i-1][1]+dp[i-1][0];
dp[i][1]=dp[i-1][0];
dp[i][j]表示第i位为j的无相邻1的方案数;
乍一看很像斐波那契,构造矩阵;
[ 1 , 1 ]
[ dp[i-1][0] , dp[i-1][1] ] *[ 1 , 0 ] =[ dp[i][0] , dp[i][1] ];
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x,y) cout<<"bug"<<x<<" "<<y<<endl;
#define bug(x) cout<<"xxx "<<x<<endl;
const int N=1e5+,M=1e6+,inf=2e9+,mod=1e9+;
const ll INF=1e18+;
ll MOD;
struct Matrix
{
ll a[][];
Matrix()
{
memset(a,,sizeof(a));
}
void init()
{
for(int i=;i<;i++)
for(int j=;j<;j++)
a[i][j]=(i==j);
}
Matrix operator + (const Matrix &B)const
{
Matrix C;
for(int i=;i<;i++)
for(int j=;j<;j++)
C.a[i][j]=(a[i][j]+B.a[i][j])%MOD;
return C;
}
Matrix operator * (const Matrix &B)const
{
Matrix C;
for(int i=;i<;i++)
for(int k=;k<;k++)
for(int j=;j<;j++)
C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j])%MOD;
return C;
}
Matrix operator ^ (const ll &t)const
{
Matrix A=(*this),res;
res.init();
ll p=t;
while(p)
{
if(p&)res=res*A;
A=A*A;
p>>=;
}
return res;
}
};
ll quickmod(ll a,ll b,ll c)
{
ll ans=;
while(b)
{
if(b&)ans=(ans*a)%c;
b>>=;
a=(a*a)%c;
}
return ans;
}
int main()
{
ll n,k,m,l;
cin>>n>>k>>l>>m;
MOD=m;
Matrix base,ans;
base.a[][]=base.a[][]=base.a[][]=;
base.a[][]=;
ans.a[][]=ans.a[][]=;
ans.a[][]=ans.a[][]=;
ans=ans*(base^(n-));
ll zero=(ans.a[][]+ans.a[][])%m;
ll one=((quickmod(2LL,n,m)-zero)%m+m)%m;
//cout<<zero<<" "<<one<<endl;
ll out=;
if((l<=&&k>=(1LL<<l)))return puts("");
for(ll i=l-;i>=;i--)
{
if(i>)
out*=zero;
else
{
ll x=(1LL<<i)&k;
if(x)
out*=one;
else
out*=zero;
}
out%=m;
}
printf("%lld\n",out%m);
return ;
}
Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp的更多相关文章
- Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations (矩阵高速幂)
题目地址:http://codeforces.com/contest/551/problem/D 分析下公式能够知道,相当于每一位上放0或者1使得最后成为0或者1.假设最后是0的话,那么全部相邻位一定 ...
- Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations
得到k二进制后,对每一位可取得的方法进行相乘即可,k的二进制形式每一位又分为2种0,1,0时,a数组必定要为一长为n的01串,且串中不出现连续的11,1时与前述情况是相反的. 且0时其方法总数为f(n ...
- Codeforces 551D GukiZ and Binary Operations(矩阵快速幂)
Problem D. GukiZ and Binary Operations Solution 一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数. 没有连续的1的二进制序列的 ...
- 水题 Codeforces Round #307 (Div. 2) A. GukiZ and Contest
题目传送门 /* 水题:开个结构体,rk记录排名,相同的值有相同的排名 */ #include <cstdio> #include <cstring> #include < ...
- Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana 分块
E. GukiZ and GukiZiana Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...
- Codeforces Round #307 (Div. 2) C. GukiZ hates Boxes 贪心/二分
C. GukiZ hates Boxes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/551/ ...
- Codeforces Round #307 (Div. 2) A. GukiZ and Contest 水题
A. GukiZ and Contest Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/551/ ...
- Codeforces Round #307 (Div. 2) C. GukiZ hates Boxes 二分
C. GukiZ hates Boxes time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana(分块)
E. GukiZ and GukiZiana time limit per test 10 seconds memory limit per test 256 megabytes input stan ...
随机推荐
- Nginx配置文件(nginx.conf)配置详解[转]
转自:http://blog.csdn.net/tjcyjd/article/details/50695922 重新学习,发觉这篇文章写得很详细就摘录了! Nginx的配置文件nginx.conf配置 ...
- 从零打造在线网盘系统之Struts2框架核心功能全解析
欢迎浏览Java工程师SSH教程从零打造在线网盘系统系列教程,本系列教程将会使用SSH(Struts2+Spring+Hibernate)打造一个在线网盘系统,本系列教程是从零开始,所以会详细以及着重 ...
- 170719、springboot编程之异步调用@Async
1.在pom.xml中增加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artif ...
- 基于JDK1.8的LinkedList源码学习笔记
LinkedList作为一种常用的List,是除了ArrayList之外最有用的List.其同样实现了List接口,但是除此之外它同样实现了Deque接口,而Deque是一个双端队列接口,其继承自Qu ...
- Gitlab安装和使用
GitLab是一个利用 Ruby on Rails 开发的开源应用程序,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目. GitLab拥有与Github类似 ...
- collectionView itemW宽度计算不对
([[UIScreen mainScreen] bounds].size.width - 28) / 4.00 没加括号 collectioView不能正常撑开 用flowLayout 不要用 代理方 ...
- python设置redis过期时间
import time import redis if __name__ == "__main__": try: conn=redis.StrictRedis(host='192. ...
- The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path(Myeclipse添加Server Library)
网上找练习的项目导入到myeclipse项目发现每个JSP 出现错误The superclass "javax.servlet.http.HttpServlet" was not ...
- Django - CBV、FBV
一.FBV FBV(function base views) 就是在视图里使用函数处理请求. 在之前django的学习中,我们一直使用的是这种方式. 二.CBV CBV(class base view ...
- Python开发【整理笔记】
回顾笔记 学python半年,新知识不断填充,之前学的东西也忘的差不多,整理下笔记,把重点再加深下印象,算是读书拾遗吧.... 1.类继承.新式类.经典类 首先,新式类.经典类的概念只存在于Pytho ...