【BZOJ5102】[POI2018]Prawnicy 堆
【BZOJ5102】[POI2018]Prawnicy
Description
Input
Output
Sample Input
3 8
4 12
2 6
1 10
5 9
11 12
Sample Output
1 2 4
题解:假如我们已经确定了最终区间的左端点L,那么我们选择的区间一定是左端点在L左边,且右端点最右的K个点。所以我们将所有区间按左端点排序,用小根堆维护左端点在左边,且右端点最大的K个点。每次用第K大值更新答案即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn=1000010;
int n,k,ans;
struct node
{
int l,r,org;
node() {}
node(int a,int b) {r=a,org=b;}
bool operator < (const node &a) const {return r>a.r;}
}p[maxn];
priority_queue<node> q;
bool cmp(const node &a,const node &b)
{
return a.l<b.l;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd(),k=rd();
int i;
for(i=1;i<=n;i++) p[i].l=rd(),p[i].r=rd(),p[i].org=i;
sort(p+1,p+n+1,cmp);
for(i=1;i<=n;i++)
{
q.push(p[i]);
if(i>k) q.pop();
if(i>=k) ans=max(ans,q.top().r-p[i].l);
}
while(!q.empty()) q.pop();
printf("%d\n",ans);
for(i=1;i<=n;i++)
{
q.push(p[i]);
if(i>k) q.pop();
if(i>=k&&ans==q.top().r-p[i].l)
{
while(!q.empty()) printf("%d ",q.top().org),q.pop();
return 0;
}
}
}
【BZOJ5102】[POI2018]Prawnicy 堆的更多相关文章
- BZOJ5102:[POI2018]Prawnicy(贪心,堆)
Description 定义一个区间(l,r)的长度为r-l,空区间的长度为0. 给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大. Input 第一行包含两个正整数n,k(1<= ...
- bzoj5102: [POI2018]Prawnicy
Description 定义一个区间(l,r)的长度为r-l,空区间的长度为0. 给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大. Input 第一行包含两个正整数n,k(1<= ...
- bzoj5102 [POI2018]Prawnicy 线段树
$bzoj$跑的太慢了...... 我们考虑用线段树来解决这个问题 考虑扫描线 当扫到左端点$i$时,我们把线段$i$加入线段树 同时,对于每个左端点$i$,我们在线段树上二分出最远的$r$满足$r$ ...
- BZOJ5102 POI2018Prawnicy(堆)
考虑固定右端点,使左端点最小.那么按右端点排序后查询前缀这些区间的左端点第k小即可.然而写了一个treap一个线段树都T飞了,感觉惨爆.事实上可以用堆求第k小,维护一个大根堆保证堆中元素不超过k个即可 ...
- BZOJ 5102: [POI2018]Prawnicy
考虑最优解的集合中一定有一个$l$最大的,我们就去枚举左端点,把所有$l$小于等于它的全丢进堆里,取前$k$个即可. #include <bits/stdc++.h> using name ...
- [POI2018]Prawnicy
题目大意: 有$n(n\le10^6)$个线段,每个线段覆盖的范围是$[l_i,r_i]$,要求从中选取$k(k\le10^6)$个线段使得这些线段覆盖范围的交集最大,求最大交集及任意一种方案. 思路 ...
- POI2018
[BZOJ5099][POI2018]Pionek(极角排序+two pointers) 几个不会严谨证明的结论: 1.将所有向量按极角排序,则答案集合一定是连续的一段. 当答案方向确定时,则一个向量 ...
- NOIP2018赛前停课集训记(10.24~11.08)
前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃 ...
- [BZOJ5102]Prawnicy
Description 定义一个区间(l,r)的长度为r-l,空区间的长度为0. 给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大. Input 第一行包含两个正整数n,k(1<= ...
随机推荐
- Html5之web workers多线程
Web Workers 是 HTML5 提供的一个javascript多线程解决方式,我们能够将一些大计算量的代码交由web Worker执行而不冻结用户界面. 1.首先看一个实例: 1)js文件(t ...
- mysql的navicat执行存储过程
---------------------------存储过程------------------------ BEGIN #Routine body goes here...SELECT p_in; ...
- 用Jquery获取checkbox多个选项
1,下拉框: var cc1 = $(".formc select[@name='country'] option[@selected]").text(); //得到下拉菜单的 ...
- 【转】【WPF】IvalueConverter和TypeConverter
简要说明: IValueConverter主要用于XAML绑定和数据源之间的转换 TypeConverter主要用于自定义类的属性类型之间的转换 本文主要讲解如何使用IValueConverter和T ...
- 【转】MFC 迅雷七窗体特效,使用DWM实现Aero Glass效果
从Windows Vista开始,Aero Glass效果被应用在了Home Premium以上的系统中(Home Basic不具有该效果).这种效果是由DWM(Desktop Window Mana ...
- C++ 数据抽象
C++ 数据抽象数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节. 数据抽象是一种依赖于接口和实现分离的编程(设计)技术. 让我们举一个现实生活中的真实例子, ...
- 转载:【原译】Erlang列表处理(Efficiency Guide)
转自:http://www.cnblogs.com/futuredo/archive/2012/10/22/2734186.html List handling 1 Creating a list ...
- 使用 JMeter 完成常用的压力测试 [转]
讲到测试,人们脑海中首先浮现的就是针对软件正确性的测试,即常说的功能测试.但是软件仅仅只是功能正确是不够的.在实际开发中,还有其它的非功能因素也起着决定性的因素,例如软件的响应速度.影响软件响应速度的 ...
- php通过字符串生存hashCode
/** * * 生存hashCode * */function hashCode($str){ if(empty($str)) return ''; $str = strtoupper($str); ...
- C/C++ 控制台演示彩色输出进度
#include <stdio.h> #include <windows.h> BOOL SetConsoleColor(WORD wAttributes); int main ...