http://acm.hdu.edu.cn/showproblem.php?pid=3681

Prison Break

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3182    Accepted Submission(s): 812
Problem Description
Rompire is a robot kingdom and a lot of robots live there peacefully. But one day, the king of Rompire was captured by human beings. His thinking circuit was changed by human and thus became a tyrant. All those who are against him
were put into jail, including our clever Micheal#1. Now it’s time to escape, but Micheal#1 needs an optimal plan and he contacts you, one of his human friends, for help.

The jail area is a rectangle contains n×m little grids, each grid might be one of the following:

1) Empty area, represented by a capital letter ‘S’.

2) The starting position of Micheal#1, represented by a capital letter ‘F’.

3) Energy pool, represented by a capital letter ‘G’. When entering an energy pool, Micheal#1 can use it to charge his battery ONLY ONCE. After the charging, Micheal#1’s battery will become FULL and the energy pool will become an empty area. Of course, passing
an energy pool without using it is allowed.

4) Laser sensor, represented by a capital letter ‘D’. Since it is extremely sensitive, Micheal#1 cannot step into a grid with a laser sensor.

5) Power switch, represented by a capital letter ‘Y’. Once Micheal#1 steps into a grid with a Power switch, he will certainly turn it off.



In order to escape from the jail, Micheal#1 need to turn off all the power switches to stop the electric web on the roof—then he can just fly away. Moving to an adjacent grid (directly up, down, left or right) will cost 1 unit of energy and only moving operation
costs energy. Of course, Micheal#1 cannot move when his battery contains no energy.



The larger the battery is, the more energy it can save. But larger battery means more weight and higher probability of being found by the weight sensor. So Micheal#1 needs to make his battery as small as possible, and still large enough to hold all energy he
need. Assuming that the size of the battery equals to maximum units of energy that can be saved in the battery, and Micheal#1 is fully charged at the beginning, Please tell him the minimum size of the battery needed for his Prison break.
 
Input
Input contains multiple test cases, ended by 0 0. For each test case, the first line contains two integer numbers n and m showing the size of the jail. Next n lines consist of m capital letters each, which stands for the description
of the jail.You can assume that 1<=n,m<=15, and the sum of energy pools and power switches is less than 15.
 
Output
For each test case, output one integer in a line, representing the minimum size of the battery Micheal#1 needs. If Micheal#1 can’t escape, output -1.
 
Sample Input
5 5
GDDSS
SSSFS
SYGYS
SGSYS
SSYSS
0 0
 
Sample Output
4
 

题意:给出一个n行m列的矩阵,其中F代表出发的地方(只有一个),S代表空地,D代表不能经过的地方,Y代表电源开关,G代表能量充电器;

一个人要从F出发,每次只能移动周围的四个相邻的格子,没走一步消耗1单位的能量;当走到G的时候能量可以充到最大值W;问要把所有的Y都关掉的情况下;W最小是多少;否则输出-1;

分析:首先Y和G的总数小于15,可以把Y与G从图中抽取出来,然后利用bfs求得Y与G两两之间的最短路径存在dis数组中;然后二分枚举W,判断条件是状态压缩DP的值是否满足一定条件,Y状态一定要走完,但是G不一定要走完;

程序:

#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"algorithm"
#include"math.h"
#define M (1<<15)+2
#define eps 1e-10
#define inf 100000000
#define mod 100000000
#define INF 0x3f3f3f3f
using namespace std;
int dp[M][16],dis[16][16],mark[16],dist[300][300],px[17],path[M][18],vis[20][20],use[20],est;
char mp[17][17];
int n,m;
int disx[5]={0,1,0,-1};
int disy[5]={1,0,-1,0};
struct node
{
int x,y,val;
}p[16];
struct Node
{
int x,y,t;
friend bool operator<(Node a,Node b)
{
return a.t>b.t;
}
};
void bfs(int x,int y)
{
priority_queue<Node>q;
memset(vis,0,sizeof(vis));
memset(dist,INF,sizeof(dist));
Node now;
now.x=x;
now.y=y;
now.t=0;
q.push(now);
vis[x][y]=1;
while(!q.empty())
{
Node cur=q.top();
q.pop();
for(int i=0;i<4;i++)
{
now.x=cur.x+disx[i];
now.y=cur.y+disy[i];
if(mp[now.x][now.y]=='D')continue;
if(now.x<0||now.y<0||now.x>=n||now.y>=m)continue;
now.t=cur.t+1;
if(dist[now.x][now.y]>now.t)
dist[now.x][now.y]=now.t;
if(vis[now.x][now.y]==0)
{
vis[now.x][now.y]=1;
q.push(now);
}
}
}
}
int DP(int cnt,int mid)//DP状压
{
int i,j,k,ff;
memset(dp,INF,sizeof(dp));
ff=0;
for(i=0;i<cnt;i++)
if(p[i].val==1)
{
ff|=(1<<i);//ff存起点F的位置
dp[1<<i][i]=0;//初始化
}
for(i=0;i<px[cnt];i++)
{
if((i&ff)!=ff)continue;//当没有起始位置的状态时跳过
for(j=0;j<cnt;j++)
{
int tep=i&(1<<j);
if(tep==0)continue;
int cur=i^(1<<j);
for(k=0;k<cnt;k++)
{
int tmp=i&(1<<k);
if(tmp==0||k==j)continue;
if(dp[i][j]>dp[cur][k]+dis[k][j])
{
if(dp[cur][k]+dis[k][j]<=mid)//在能量承受的范围内可以到达状态dp[i][j]更新;
{
dp[i][j]=dp[cur][k]+dis[k][j];
if(p[j].val==2)//如果j刚好是G则能量充满,此时把dp置为0;
dp[i][j]=0;
}
}
}
if((est&i)==est)//判断Y是否经过完
{
if(dp[i][j]<INF)
return 1;
}
/**************第二种写法********************/
/*for(k=0;k<cnt;k++)
{
int tmp=i&(1<<k);
if(tmp==0||k==j)continue;
if(dp[cur][k]>=dis[k][j])//比较需要消耗的能量是不是大于剩余的能量;
{
dp[i][j]=max(dp[i][j],dp[cur][k]-dis[j][k]);
if(p[j].val==2)//如果j刚好是G则能量充满,此时把dp能量充满;
dp[i][j]=mid;
}
}
if((est&i)==est)//判断Y是否经过完
{
if(dp[i][j]>=0)//如果不是-1则完成
return 1;
}*/
/*******************************************/
}
}
return 0;
}
int b[M];
int main()
{
int i,j;
px[0]=1;
for(i=1;i<=15;i++)
px[i]=px[i-1]*2;
while(scanf("%d%d",&n,&m),m||n)
{
for(i=0;i<n;i++)
scanf("%s",mp[i]);
int cnt=0;
est=0;
memset(p,0,sizeof(p));
for(i=0;i<n;i++)//从图中抽取出F,Y,G三个状态;
{
for(j=0;j<m;j++)
{
if(mp[i][j]=='F')
{
est=est|(1<<cnt);
p[cnt].x=i;
p[cnt].y=j;
p[cnt].val=1;
cnt++;
}
else if(mp[i][j]=='G')
{
p[cnt].x=i;
p[cnt].y=j;
p[cnt].val=2;
cnt++;
}
else if(mp[i][j]=='Y')
{
est=est|(1<<cnt);
p[cnt].x=i;
p[cnt].y=j;
p[cnt].val=3;
cnt++;
}
}
}
memset(dis,INF,sizeof(dis));
for(i=0;i<cnt;i++)
{
bfs(p[i].x,p[i].y);
for(j=0;j<cnt;j++)
{
if(i==j)dis[i][j]=INF;
else
dis[i][j]=dist[p[j].x][p[j].y];
}
}//bfs求最短路
int left=0;
int right=m*n;
int mid,ans=-1;
while(left<=right)//二分枚举W
{
mid=(left+right)/2;
if(DP(cnt,mid))
{
ans=mid;
right=mid-1;
}
else
left=mid+1;
}
printf("%d\n",ans);
}
return 0;
}

BFS+状态压缩DP+二分枚举+TSP的更多相关文章

  1. HDU 3247 Resource Archiver (AC自己主动机 + BFS + 状态压缩DP)

    题目链接:Resource Archiver 解析:n个正常的串.m个病毒串,问包括全部正常串(可重叠)且不包括不论什么病毒串的字符串的最小长度为多少. AC自己主动机 + bfs + 状态压缩DP ...

  2. poj 1753 Flip Game(bfs状态压缩 或 dfs枚举)

    Description Flip game squares. One side of each piece is white and the other one is black and each p ...

  3. 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分

    题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...

  4. 【bzoj3312】[Usaco2013 Nov]No Change 状态压缩dp+二分

    题目描述 Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 ...

  5. hdu 4770 13 杭州 现场 A - Lights Against Dudely 暴力 bfs 状态压缩DP 难度:1

    Description Harry: "But Hagrid. How am I going to pay for all of this? I haven't any money.&quo ...

  6. bfs+状态压缩dp

    题目连接 题解 : 对两两管道进行bfs,然后用dp[i][j] 来表示在i状态下通过了前j个管道 参考博客 #include<bits/stdc++.h> using namespace ...

  7. 三进制状态压缩DP(旅行商问题TSP)HDU3001

    http://acm.hdu.edu.cn/showproblem.php?pid=3001 Travelling Time Limit: 6000/3000 MS (Java/Others)     ...

  8. HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))

    Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...

  9. HDU 3681 Prison Break(状态压缩dp + BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3681 前些天花时间看到的题目,但写出不来,弱弱的放弃了.没想到现在学弟居然写出这种代码来,大吃一惊附加 ...

随机推荐

  1. jquery easyui datagrid 分页实现

    通常情况下页面数据的分页显示分成真假两种.真分页是依靠后台查询时控制调出数据的数量来实现分页,也就是说页面在后台对数据进行处理,仅传输当前需要页的数据到前台来显示.而假分页则是后台一次性将所有的数据一 ...

  2. 关于在Android或Java中精度缺失的解决方法

    left,right是两个String类型的字符串,myres是一个double类型的变量. 如果我们用下面的语句把left,right先转换为double后直接加法的话,如果作3.3乘3之类的运算( ...

  3. MFC CreateWindow介绍

    CreateWindow 该函数创建一个重叠式窗口.弹出式窗口或子窗口.它指定窗口类,窗口标题,窗口风格,以及窗口的初始位置及大小(可选的).函数也指该窗口的父窗口或所属窗口(如果存在的话),及窗口的 ...

  4. 查找——图文翔解HashTree(哈希树)

    引 在各种数据结构(线性表.树等)中,记录在结构中的相对位置是随机的.因此在机构中查找记录的时须要进行一系列和keyword的比較.这一类的查找方法建立在"比較"的基础上.查找的效 ...

  5. Winform appconfig修改后的更新问题

  6. 【C++基础 05】友元函数和友元类

    友元是一种定义在类外部的普通函数或类,但它须要在类体内进行说明,为了与该类的成员函数加以差别,在说明时前面加以keywordfriend. 友元不是成员函数,可是它能够訪问类中的私有成员. 友元的作用 ...

  7. Git 基础 - 查看提交历史

    查看提交历史 在提交了若干更新之后,又或者克隆了某个项目,想回顾下提交历史,可以使用 git log 命令查看. 接下来的例子会用我专门用于演示的 simplegit 项目,运行下面的命令获取该项目源 ...

  8. Asp.net 程序优化js,css合并与压缩

    访问时将js和css压缩并且缓存在客户端,采用的是Yahoo.Yui.Compressor组件还完成的,从这里可下载 创建一个IHttpHandler来处理文件 ) }; )              ...

  9. linux系统中RPM包的通用命名规则

    http://blog.csdn.net/kexiuyi/article/details/53292358

  10. Shell 文本处理工具

    转载自:http://www.cnblogs.com/wish123/p/5540210.html Linux下使用Shell处理文本时最常用的工具: find.grep.xargs.sort.uni ...