卢卡斯定理Lucas

在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m_i\)为\(m\)的因式分解,\(n_i\)为\(n\)的因式分解,\(p\)为质数。

由\(Edward~Lucas\)在1878年提出。

证明:

首先我们将\(C^i_p\)进行一下变式即\(C^i_j = \frac{p!}{i!(p - i)!}\),提出来一个\(\frac{p}{i}\)也就等于\(\frac{p}{i} \times \frac{(p - 1)!}{(i - 1)!(p - i)}\)。因此我们推出:

\(C^i_p \equiv \frac{p}{i}C^{i - 1}_{P - 1} \equiv 0 ~(mod~p)\)。其中\(1 \leq i \leq p - 1\)

然后我们得到:

\((X +1)^p \equiv C_p^01^p + C_p^1X^2 + ... + C_P^PX^P\)(实际上就是个多项式展开...)

同时又同余\(C_p^01^pX^0 + C_p^p1^0X^p \equiv 1 + X^p (mod ~p)\)

因此我们又推出:

\((1 + X)^p \equiv 1 + X^p (mod ~ p)\)

接着我们可以利用数学归纳法求出\((1 +X)^{p^i} \equiv 1 + X^{p^i} (mod~ p)\)。接下来将\(m\)用\(p\)进制数表示就是\(\sum_{i = 0} ^km_ip^i\)。

并且我们还可以看出\(\sum_{n = 0}^{m} C_n^mX^n = (1 +X)^m = \prod _{i = 0}^k((1 + X)^{p^i})^{m_i} = \prod _{i = 0}^k(1 + X^{p^i})^{m_i} = \prod _{i = 0}^k(\sum_{n_i = 0}^{m_i} C_{n_i}^{m_i}X^{n_ip^i})\)
也就等于\(\prod _{i = 0}^k(\sum_{n_i = 0}^{p - 1} C_{n_i}^{m_i}X^{n_ip^i}) = \sum_{n_i = 0}^{k} (\prod_{i - 0}^kC_{n_i}^{m_i})X^n ~ (mod ~ p)\)

因为\(n_i\)为\(n\)的\(p\)进制表示,因此得证。

模板:(Link

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long LL ;
const int MAXN = 100010 ;
LL N, M, P, X[MAXN] ;

inline LL Read() {
    LL X = 0, F = 1 ; char ch = getchar() ;
    while (ch > '9' || ch < '0') F = (ch == '-' ? - 1 : 1), ch = getchar() ;
    while (ch >= '0' && ch <= '9') X=(X<<1)+(X<<3)+(ch^48), ch = getchar() ;
    return X * F ;
}

inline LL QuickPow(LL A, LL B) {
    LL Ans = 1 ;    if (! B) return 1 % P ;
    while (B) {
        if (B & 1) Ans = Ans * A % P ;
        A = A * A % P, B >>= 1 ;
    }   return Ans ;
}

inline LL C(LL A, LL B) {
    if (B > A) return 0 ;
    return (X[A] * QuickPow(X[B], P - 2)) % P * QuickPow(X[A - B], P - 2) % P ;
}

inline LL Lucas(LL A, LL B) {
    if (! B) return 1 ;
    else return (C(A % P, B % P) * Lucas(A / P, B / P)) % P ;
}

int main() {
    int T = Read() ; while (T --) {
        N = Read(), M = Read(), P = Read() ;
        X[0] = 1 ;
        for (LL i = 1 ; i <= P ; i ++)
            X[i] = (X[i - 1] * i) % P ;
        LL Ans = Lucas(N + M, N) ;
        printf("%lld\n", Ans) ;
    }   return 0 ;
}

卢卡斯定理Lucas的更多相关文章

  1. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  2. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  3. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  4. Lucas 卢卡斯定理

    Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...

  5. 数论篇7——组合数 & 卢卡斯定理(Lucas)

    组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...

  6. CRT中国剩余定理 & Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  7. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  8. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  9. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

随机推荐

  1. SpringMVC_关于<url-pattern>

    一.配置   在没有特殊要求的情况下,SpringMVC的中央调度器DispatcherServlet的<url-oattern/>常使用后缀匹配的方式,如写*do. 二.不能写为/* 这 ...

  2. PHP 经典算法

    <?  //--------------------  // 基本数据结构算法 //--------------------  //二分查找(数组里查找某个元素)  function bin_s ...

  3. 面向对象,继承,浏览器,上传文件, ajax

    'use strict'; //父类 class Student2{ constructor(name){ this.name = name || 'tom'; } hello(){ console. ...

  4. websocket协议及案例

    WebSocket是一种用于在服务器与客户端之间实现高效的双向通信的机制.可以解决数据实时性要求比较高的应用,比如:在线聊天,在线教育,炒股或定位等. 一:websocket产生背景: 为了解决这种实 ...

  5. SSM 框架-04-使用maven创建web项目

    SSM 框架-04-使用maven创建web项目 本篇介绍使用MAVEN来管理jar包,就不用一个一个去添加和下载jar包了,直接在maven配置文件中配置就可以了,maven可以帮助我们自动下载.本 ...

  6. Jarvis OJ-Reverse题目Writeup

    做一道更一道吧233333 DD-Android Easy 下载apk,先安装一下试试吧…… 猜测是输入正确的内容后给flag吧 将后缀改成zip,解压,用dex2jar处理classes.dex,然 ...

  7. int占几个字节?

    class Program19 { static void Main(string[] args) { // true,或false Console.WriteLine("bool占用:&q ...

  8. HTML学习---基础知识学习

    1.1. HTML 1.为什么要有HTML? "Hello" "<h1>Hello</h1>" - 浏览器渲染时使用一套HTML规则, ...

  9. 企业级Apache详解

    安装Apache #Apache安装 rpm -qa|grep httpd yum install httpd #2编译安装: -->推荐安装 cd /root/software yum -y ...

  10. Linq使用技巧及查询示例(一)

    Linq的使用大体分为两种:语句表达式   和  方法 首先,我们要在控制器中定义好context private ApplicationDbContext db = new ApplicationD ...