B树
下面来具体介绍一下B-树(Balance Tree),一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。

B+树
一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。

一个m阶的B+树具有如下几个特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素

二叉查找树(BST)具备什么特性呢?
1.左子树上所有结点的值均小于或等于它的根结点的值。
2.右子树上所有结点的值均大于或等于它的根结点的值。
3.左、右子树也分别为二叉排序树。

红黑树
1.节点是红色或黑色。
2.根节点是黑色。
3.每个叶子节点都是黑色的空节点(NIL节点)。
4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

B树、B+树、二叉树、红黑树的更多相关文章

  1. 吐血整理:二叉树、红黑树、B&B+树超齐全,快速搞定数据结构

    前言 没有必要过度关注本文中二叉树的增删改导致的结构改变,规则操作什么的了解一下就好,看不下去就跳过,本文过多的XX树操作图片纯粹是为了作为规则记录,该文章主要目的是增强下个人对各种常用XX树的设计及 ...

  2. 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

    http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...

  3. 大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转

    前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3 ...

  4. 红黑树与AVL树

    概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...

  5. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

  6. Linux内核之于红黑树and AVL树

    为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的有用主义特质导致的结果,本短文依旧是形而上的观点.红黑树能够直接由2-3树导出.我们能够不再提红黑树,而仅仅提2- ...

  7. AVL树、红黑树以及B树介绍

    简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与 ...

  8. 树形结构_红黑树:平衡2X 哈夫曼树:最优2X

    红黑树:平衡2X 哈夫曼树:最优2X 红黑树 :TreeSet.TreeMap 哈夫曼树 1. 将w1.w2.…,wn看成是有n 棵树的森林(每棵树仅有一个结点): 2. 在森林中选出根结点的权值最小 ...

  9. Java数据结构和算法(八)--红黑树与2-3树

    红黑树规则: 1.每个节点要么是红色,要么是黑色 2.根节点都是黑色节点 3.每个叶节点是黑色节点 3.每个红色节点的两个子节点都是黑色节点,反之,不做要求,换句话说就是不能有连续两个红色节点 4.从 ...

  10. 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

    某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...

随机推荐

  1. win8.1rtm专业版无法安装net3.5还有iis

    win8.1rtm专业版无法安装net3.5还有iis错误代码:0x800F0906 已解决:dism.exe /online /enable-feature /featurename:NetFX3 ...

  2. IOS strong和weak的区别

    strong和weak的区别 strong表示保留它指向的堆上的内存区域不再指向这块区域了. 也就是说我强力指向了一个区域,我们不再指向它的条件只有我们指向nil或者我自己也不在内存上,没有人stro ...

  3. MQTT的学习研究(十)【转】mosquitto——一个开源的mqtt代理

    MQTT(MQ Telemetry Transport),消息队列遥测传输协议,轻量级的发布/订阅协议,适用于一些条件比较苛刻的环境,进行低带宽.不可靠或间歇性的通信.值得一提的是mqtt提供三种不同 ...

  4. LeetCode——pow(x, n)

    超时了,只能先这么干了. return Math.pow(x, n);

  5. JavaIO再回顾

    File类 JavaIO访问文件名和文件检测相关操作 分隔符最好是使用File类提供的File.separator,使程序更加的健壮. File类提供的方法基本上是见名知意,例如getName()就是 ...

  6. 域渗透学习预备知识-IPC$的入侵防御

    一.什么是IPC$ 以下段落引文自:http://www.xfocus.net/articles/200303/493.html IPC$(Internet Process Connection)是共 ...

  7. 【UOJ274】【清华集训2016】温暖会指引我们前行 LCT

    [UOJ274][清华集训2016]温暖会指引我们前行 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很 ...

  8. 【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA

    [BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lasta ...

  9. Unity3D笔记七 GUILayout

    一.说到GUILayout就要提到GUI,二者的区别是什么 GUILayout是游戏界面的布局.GUI(界面)和GUILayout(界面布局)功能上面是相似的从命名中就可以看到这两个东西非常相像,但是 ...

  10. dubbo有什么作用

    转自:http://blog.csdn.net/ichsonx/article/details/39008519 1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的R ...