Decision Tree such as C4.5 is easy to parallel. Following is an example.

This is a non-parallel version:

public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){
for(Sample sample : dataset){
model.addSample((MapBasedBinarySample<FK, FV>)sample);
}
Queue<TreeNode<FK, FV>> Q = new LinkedList<TreeNode<FK, FV>>();
TreeNode<FK, FV> root = model.selectRootTreeNode();
model.addTreeNode(root);
Q.add(root);
while (!Q.isEmpty()){
TreeNode v = Q.poll();
if(v.getDepth() >= model.getMaxDepth()){
continue;
}
FeatureSplit<FK> featureSplit = model.selectFeature(v);
if(featureSplit.getFeatureId() == null){
continue;
}
v.setFeatureSplit(featureSplit);
Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children =
model.newTreeNode(v, featureSplit);
TreeNode leftNode = children.getKey();
TreeNode rightNode = children.getValue();
if(leftNode != null
&& leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
v.setLeft(leftNode);
model.addTreeNode(leftNode);
Q.add(leftNode);
}
if(rightNode != null
&& rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
v.setRight(rightNode);
model.addTreeNode(rightNode);
Q.add(rightNode);
}
}
}

And this is a parallel version:

public class NodeSplitThread implements Runnable{
private TreeNode<FK, FV> node = null;
private Queue<TreeNode<FK, FV>> Q = null; public NodeSplitThread(TreeNode<FK, FV> node, Queue<TreeNode<FK, FV>> Q){
this.node = node;
this.Q = Q;
}
@Override
public void run() {
if(node.getDepth() >= model.getMaxDepth()){
return;
}
FeatureSplit<FK> featureSplit = model.selectFeature(node);
if(featureSplit.getFeatureId() == null){
return;
}
node.setFeatureSplit(featureSplit);
Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children = model.newTreeNode(node, featureSplit);
TreeNode<FK, FV> leftNode = children.getKey();
TreeNode<FK, FV> rightNode = children.getValue(); if(leftNode != null && leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
node.setLeft(leftNode);
model.addTreeNode(leftNode);
Q.add(leftNode);
}
if(rightNode != null && rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
node.setRight(rightNode);
model.addTreeNode(rightNode);
Q.add(rightNode);
}
}
} public List<TreeNode<FK, FV>> pollTopN(Queue<TreeNode<FK, FV>> Q, int n){
List<TreeNode<FK, FV>> ret = new ArrayList<TreeNode<FK, FV>>();
for(int i = 0; i < n; ++i){
if(Q.isEmpty()) break;
TreeNode<FK, FV> node = Q.poll();
ret.add(node);
}
return ret;
} @Override
public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){ for(Sample sample : dataset){
model.addSample((MapBasedBinarySample<FK, FV>)sample);
}
Queue<TreeNode<FK, FV>> Q = new ConcurrentLinkedQueue<TreeNode<FK, FV>>();
TreeNode<FK, FV> root = model.selectRootTreeNode();
model.addTreeNode(root);
Q.add(root);
ExecutorService threadPool = Executors.newFixedThreadPool(10);
while (!Q.isEmpty()){
List<TreeNode<FK, FV>> nodes = pollTopN(Q, 10);
List<Future> tasks = new ArrayList<Future>(nodes.size());
for(TreeNode<FK, FV> node : nodes){
Future task = threadPool.submit(new NodeSplitThread(node, Q));
tasks.add(task);
}
for(Future task : tasks){
try {
task.get();
} catch (InterruptedException e) {
continue;
} catch (ExecutionException e) {
continue;
}
}
}
threadPool.shutdown();
try {
threadPool.awaitTermination(60, TimeUnit.SECONDS);
} catch (InterruptedException e) {
threadPool.shutdownNow();
Thread.interrupted();
}
threadPool.shutdownNow();
}

http://xlvector.net/blog/?p=896

Parallel Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

随机推荐

  1. mysql中" ' "和 " ` "的区别

    http://blog.csdn.net/yang3290325/article/details/3349907

  2. 使用Unity制作的一个望远镜特效,在狙击手游戏中非经常见

    仅仅须要编写一个脚本文件,然后就能随意设置放大缩小的速度.以及程度.

  3. 下载SpringJar包

    方法一: 地址:http://repo.spring.io/release/org/springframework/spring/ 此方法简单. 方法二: 安装TortoiseSVN后,在电脑的任意空 ...

  4. MongoDB 用户角色

    Read:允许用户读取指定数据库 readWrite:允许用户读写指定数据库 dbAdmin:允许用户在指定数据库中执行管理函数,如索引创建.删除,查看统计或访问system.profile user ...

  5. linux发布项目

    1.右击项目 export --->war file 上传到linux服务器 2.解压 jiar -xvf xx.war 3.移动到 tomcat webapps文件中 4.启动tomcat 访 ...

  6. java基础---->多线程之Daemon(五)

    在java线程中有两种线程,一种是用户线程,另一种是守护线程.守护线程是一种特殊的线程,当进程中不存在非守护线程了,则守护线程自动销毁.今天我们通过实例来学习一下java中关于守护线程的知识.我是个平 ...

  7. LeetCode——pow(x, n)

    超时了,只能先这么干了. return Math.pow(x, n);

  8. LeetCode——Min Stack

    Description: Design a stack that supports push, pop, top, and retrieving the minimum element in cons ...

  9. crossdomain.xml跨域配置文件的安全注意事项

    零.绪论: 对WEB中的FLASH确实了解不多,对程序中的跨域配置也了解不多,这是自己以前写的一篇笔记,到现在也还了解不深,勉强记下来罢了,备忘. 一.什么是crossdomain.xml?这是一个f ...

  10. Egret3D初步笔记二 (Unity导出场景使用)

    一 Scene 根据上一节的继续.在导入unity4.7.1_Egret3D_Dll.unitypackage后. 在Unity中双击打开Assets/Egret3D/Example下的Example ...