Decision Tree such as C4.5 is easy to parallel. Following is an example.

This is a non-parallel version:

public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){
for(Sample sample : dataset){
model.addSample((MapBasedBinarySample<FK, FV>)sample);
}
Queue<TreeNode<FK, FV>> Q = new LinkedList<TreeNode<FK, FV>>();
TreeNode<FK, FV> root = model.selectRootTreeNode();
model.addTreeNode(root);
Q.add(root);
while (!Q.isEmpty()){
TreeNode v = Q.poll();
if(v.getDepth() >= model.getMaxDepth()){
continue;
}
FeatureSplit<FK> featureSplit = model.selectFeature(v);
if(featureSplit.getFeatureId() == null){
continue;
}
v.setFeatureSplit(featureSplit);
Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children =
model.newTreeNode(v, featureSplit);
TreeNode leftNode = children.getKey();
TreeNode rightNode = children.getValue();
if(leftNode != null
&& leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
v.setLeft(leftNode);
model.addTreeNode(leftNode);
Q.add(leftNode);
}
if(rightNode != null
&& rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
v.setRight(rightNode);
model.addTreeNode(rightNode);
Q.add(rightNode);
}
}
}

And this is a parallel version:

public class NodeSplitThread implements Runnable{
private TreeNode<FK, FV> node = null;
private Queue<TreeNode<FK, FV>> Q = null; public NodeSplitThread(TreeNode<FK, FV> node, Queue<TreeNode<FK, FV>> Q){
this.node = node;
this.Q = Q;
}
@Override
public void run() {
if(node.getDepth() >= model.getMaxDepth()){
return;
}
FeatureSplit<FK> featureSplit = model.selectFeature(node);
if(featureSplit.getFeatureId() == null){
return;
}
node.setFeatureSplit(featureSplit);
Pair<TreeNode<FK,FV>, TreeNode<FK, FV>> children = model.newTreeNode(node, featureSplit);
TreeNode<FK, FV> leftNode = children.getKey();
TreeNode<FK, FV> rightNode = children.getValue(); if(leftNode != null && leftNode.getSampleSize() > model.getMinSampleSizeInNode()){
node.setLeft(leftNode);
model.addTreeNode(leftNode);
Q.add(leftNode);
}
if(rightNode != null && rightNode.getSampleSize() > model.getMinSampleSizeInNode()){
node.setRight(rightNode);
model.addTreeNode(rightNode);
Q.add(rightNode);
}
}
} public List<TreeNode<FK, FV>> pollTopN(Queue<TreeNode<FK, FV>> Q, int n){
List<TreeNode<FK, FV>> ret = new ArrayList<TreeNode<FK, FV>>();
for(int i = 0; i < n; ++i){
if(Q.isEmpty()) break;
TreeNode<FK, FV> node = Q.poll();
ret.add(node);
}
return ret;
} @Override
public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){ for(Sample sample : dataset){
model.addSample((MapBasedBinarySample<FK, FV>)sample);
}
Queue<TreeNode<FK, FV>> Q = new ConcurrentLinkedQueue<TreeNode<FK, FV>>();
TreeNode<FK, FV> root = model.selectRootTreeNode();
model.addTreeNode(root);
Q.add(root);
ExecutorService threadPool = Executors.newFixedThreadPool(10);
while (!Q.isEmpty()){
List<TreeNode<FK, FV>> nodes = pollTopN(Q, 10);
List<Future> tasks = new ArrayList<Future>(nodes.size());
for(TreeNode<FK, FV> node : nodes){
Future task = threadPool.submit(new NodeSplitThread(node, Q));
tasks.add(task);
}
for(Future task : tasks){
try {
task.get();
} catch (InterruptedException e) {
continue;
} catch (ExecutionException e) {
continue;
}
}
}
threadPool.shutdown();
try {
threadPool.awaitTermination(60, TimeUnit.SECONDS);
} catch (InterruptedException e) {
threadPool.shutdownNow();
Thread.interrupted();
}
threadPool.shutdownNow();
}

http://xlvector.net/blog/?p=896

Parallel Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

随机推荐

  1. cesium图形上加载图片

    <!DOCTYPE html> <html> <head> <!-- Use correct character set. --> <meta c ...

  2. brew 的 调度工具DBGPRINTF 和 c语言的 printf

    在官方的文档中是这样备注DBGPRINTF Prototype void dbgprintf(const char *pszFormat,...); Description This function ...

  3. shell基础篇(三)--引号

    ---今天篇幅比较少:只介绍引号. shell中的引号有三种:双引号",单引号',反引号`1. 双引号:由双引号括起来的字符,除$.倒引号(`)和反斜线(\)仍保留其特殊功能外,其余字符均作 ...

  4. 《转载》POI导出excel日期格式

    参考帖子: [1]http://www.ithao123.cn/content-2028409.html [2]http://javacrazyer.iteye.com/blog/894850 再读本 ...

  5. Servlet MVC 项目实战实例

    MVC的架构模式,一直是JavaEE开发中所遵循的标准,如今很多框架都已经很好的实现了MVC,像大家所熟知的Struts,SpringMVC,JSF等,但是如果没有任何框架的支持,仅仅通过JavaWe ...

  6. HTTP/2笔记之连接建立

    前言 HTTP/2协议在TCP连接之初进行协商通信,只有协商成功,才会涉及到后续的请求-响应等具体的业务型数据交换. HTTP版本标识符 h2,基于TLS之上构建的HTTP/2,作为ALPN的标识符, ...

  7. struts2的核心和工作原理 <转>

    在学习struts2之前,首先我们要明白使用struts2的目的是什么?它能给我们带来什么样的好处? 设计目标 Struts设计的第一目标就是使MVC模式应用于web程序设计.在这儿MVC模式的好处就 ...

  8. c# SQL Server数据库操作-数据适配器类:SqlDataAdapter

    SqlDataAdapter类主要在MSSQL与DataSet之间执行数据传输工具,本节将介绍如何使用SqlDataAdapter类来填充DataSet和MSSQL执行新增.修改..删除等操作. 功能 ...

  9. 证书:数字签名和验签&加密和解密

    用的是湖北省数字证书认证管理中心的签名和加密 1.带私钥的证书,即p12格式证书(后缀为.pfx) 2.不带私钥的证书,有多种格式,通常我们使用的是cer格式证书(后缀为.cer) 一. 1.什么是对 ...

  10. java类的成员初始化顺序和初始化块知识

    java类的成员初始化顺序和初始化块知识 转自:http://blog.csdn.net/lgfeng218/article/details/7606735 属性.方法.构造方法和自由块都是类中的成员 ...