【BZOJ3527】[ZJOI2014]力

题面

bzoj

洛谷

题解

易得

\[E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}
\]

设\(f_i=q_i\),\(g_i=i^2\)

\[E_i=\sum_{j<i}f_jg_{i-j}-\sum_{j>i}f_jg_{i-j}
\]

将\(f\)翻转得到\(h\)

\[E_i=\sum_{j<i}f_jg_{i-j}-\sum_{j<i}h_jg_{i-j}
\]

这™就是两个卷积啊。。。

就分别\(FFT\)求出两个卷积然后一减即可

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <complex>
using namespace std;
#define sqr(x) (1.0 * (x) * (x))
typedef complex<double> Complex;
const double PI = acos(-1.0);
const int MAX_N = 3e5 + 5;
int n, N, M, P, r[MAX_N];
double q[MAX_N], ans[MAX_N];
Complex a[MAX_N], b[MAX_N];
void FFT(Complex *p, int op) {
for (int i = 0; i < N; i++) if (i < r[i]) swap(p[i], p[r[i]]);
for (int i = 1; i < N; i <<= 1) {
Complex rot(cos(PI / i), op * sin(PI / i));
for (int j = 0; j < N; j += (i << 1)) {
Complex w(1, 0);
for (int k = 0; k < i; k++, w *= rot) {
Complex x = p[j + k], y = w * p[i + j + k];
p[j + k] = x + y, p[i + j + k] = x - y;
}
}
}
} int main () {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lf", &q[i]);
N = M = n - 1;
for (int i = 0; i <= N; i++) a[i] = q[i + 1], b[i] = 1.0 / sqr(i + 1);
M += N;
for (N = 1; N <= M; N <<= 1, ++P) ;
for (int i = 0; i < N; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
FFT(a, 1); FFT(b, 1);
for (int i = 0; i <= N; i++) a[i] = a[i] * b[i];
FFT(a, -1);
for (int i = 2; i <= n; i++) ans[i] += (double)(a[i - 2].real() / N);
for (int i = 0; i <= N; i++) a[i].real() = b[i].real() = a[i].imag() = b[i].imag() = 0;
for (int i = 0; i < n; i++) a[i] = q[n - i], b[i] = 1.0 / sqr(i + 1);
FFT(a, 1); FFT(b, 1);
for (int i = 0; i <= N; i++) a[i] = a[i] * b[i];
FFT(a, -1);
for (int i = n - 1; i; i--) ans[i] -= (double)(a[n - i - 1].real() / N);
for (int i = 1; i <= n; i++) printf("%0.3lf\n", ans[i]);
return 0;
}

【BZOJ3527】[ZJOI3527]力的更多相关文章

  1. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

  2. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  3. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

  4. 【BZOJ-3527】力 FFT

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 89 ...

  5. BZOJ3527[ZJOI]力

    无题面神题 原题意: 求所有的Ei=Fi/qi. 题解: qi被除掉了,则原式中的qj可以忽略. 用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i ...

  6. bzoj3527: [Zjoi2014]力

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. BZOJ3527[Zjoi2014]力——FFT

    题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...

  8. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  9. 2019.02.28 bzoj3527: [Zjoi2014]力(fft)

    传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...

随机推荐

  1. Java基础知识强化之集合框架笔记78:ConcurrentHashMap之 ConcurrentHashMap、Hashtable、HashMap、TreeMap区别

    1. Hashtable: (1)是一个包含单向链的二维数组,table数组中是Entry<K,V>存储,entry对象: (2)放入的value不能为空: (3)线程安全的,所有方法均用 ...

  2. Android如何自学----转自lavor从segmentfault

    如何自学Android 1. Java知识储备 本知识点不做重点讲解: 对于有基础的同学推荐看<Java编程思想>,巩固基础,查漏补全,了解并熟悉更多细节知识点. 对于没有基础的同学推荐看 ...

  3. [HNOI2010]公交线路

    题目 发现\(n\)比较大,但是\(k,p\)都很小,考虑矩乘使得复杂度倾斜一下 发现所有车的最大间隔都是\(p\),还保证\(k<p\),于是我们可以考虑压下最后\(p\)位的情况 于是设\( ...

  4. Linux学习总结(十七)-shell 基础知识

    一 先介绍几种常用字符: 1 * 匹配任意个任意字符2 ?匹配一个任意字符3 # 注释符号,符号后的语句不被执行4 \脱意字符,后面跟带含义字符时,照原字符输出5 []匹配包含在[]之中的任意一个字符 ...

  5. 复习静态页面polo-360

    1.ps快捷键 ctrl+1 恢复到100% ctrl+0 适应屏幕大小 ctrl+r 显示标尺 辅助线的利用 矩形框--图像--裁剪:文件存储为web所用格式,注意选格式. 1个像素的平铺 雪碧图的 ...

  6. Kali-linux密码在线破解

    为了使用户能成功登录到目标系统,所以需要获取一个正确的密码.在Kali中,在线破解密码的工具很多,其中最常用的两款分别是Hydra和Medusa.本节将介绍使用Hydra和Medusa工具实现密码在线 ...

  7. Java 读取properties

    package Db; import java.io.InputStream; import java.util.Properties; import java.io.BufferedReader; ...

  8. SQL修改字段默认值、获取字段默认值

    一.SQL修改字段默认值 alter table 表名 drop constraint 约束名字 说明:删除表的字段的原有约束 alter table 表名 add constraint 约束名字 D ...

  9. sharepoint rest 脚本发送邮件

    function processSendEmails() { var from = 'asad@Example.com', to = 'someone@Example.com', body = 'He ...

  10. JAVA语言编程思维入门

    Java语言是一门强数据类型语言,也就是所有的数据有自己的数据类型,不能搞混淆.比如整数int 字符串String 不能用int a="字符串123";这样写是错的,因为数据类型不 ...