【BZOJ3527】[ZJOI3527]力
【BZOJ3527】[ZJOI2014]力
题面
题解
易得
\]
设\(f_i=q_i\),\(g_i=i^2\)
\]
将\(f\)翻转得到\(h\)
\]
这™就是两个卷积啊。。。
就分别\(FFT\)求出两个卷积然后一减即可
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <complex>
using namespace std;
#define sqr(x) (1.0 * (x) * (x))
typedef complex<double> Complex;
const double PI = acos(-1.0);
const int MAX_N = 3e5 + 5;
int n, N, M, P, r[MAX_N];
double q[MAX_N], ans[MAX_N];
Complex a[MAX_N], b[MAX_N];
void FFT(Complex *p, int op) {
for (int i = 0; i < N; i++) if (i < r[i]) swap(p[i], p[r[i]]);
for (int i = 1; i < N; i <<= 1) {
Complex rot(cos(PI / i), op * sin(PI / i));
for (int j = 0; j < N; j += (i << 1)) {
Complex w(1, 0);
for (int k = 0; k < i; k++, w *= rot) {
Complex x = p[j + k], y = w * p[i + j + k];
p[j + k] = x + y, p[i + j + k] = x - y;
}
}
}
}
int main () {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lf", &q[i]);
N = M = n - 1;
for (int i = 0; i <= N; i++) a[i] = q[i + 1], b[i] = 1.0 / sqr(i + 1);
M += N;
for (N = 1; N <= M; N <<= 1, ++P) ;
for (int i = 0; i < N; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
FFT(a, 1); FFT(b, 1);
for (int i = 0; i <= N; i++) a[i] = a[i] * b[i];
FFT(a, -1);
for (int i = 2; i <= n; i++) ans[i] += (double)(a[i - 2].real() / N);
for (int i = 0; i <= N; i++) a[i].real() = b[i].real() = a[i].imag() = b[i].imag() = 0;
for (int i = 0; i < n; i++) a[i] = q[n - i], b[i] = 1.0 / sqr(i + 1);
FFT(a, 1); FFT(b, 1);
for (int i = 0; i <= N; i++) a[i] = a[i] * b[i];
FFT(a, -1);
for (int i = n - 1; i; i--) ans[i] -= (double)(a[n - i - 1].real() / N);
for (int i = 1; i <= n; i++) printf("%0.3lf\n", ans[i]);
return 0;
}
【BZOJ3527】[ZJOI3527]力的更多相关文章
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- 【BZOJ-3527】力 FFT
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1544 Solved: 89 ...
- BZOJ3527[ZJOI]力
无题面神题 原题意: 求所有的Ei=Fi/qi. 题解: qi被除掉了,则原式中的qj可以忽略. 用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
随机推荐
- python中的装饰函数
在面向对象(OOP)的设计模式中,decorator被称为装饰模式.OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator ...
- iOS离屏渲染的解释:渲染与cpu、gpu
重开一个环境(内存.资源.上下文)来完成(部分)图片的绘制 指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作 意为离屏渲染,指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作. ...
- hdu 1874 Dijkstra算法
先贴个网上找的比较通俗易懂的教程: 2.1Dijkstra算法(非负权,使用于有向图和无向图) Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心 ...
- appium 环境安装windows
创建AVD -c --sdcard : 指向一个共享的SD存储卡的路径,或者是新的SD储存卡容量大小. -n --name : AVD的名字(该项是必须的) -a --snapshot ...
- Golang 单元测试和性能测试
开发程序其中很重要的一点是测试,我们如何保证代码的质量,如何保证每个函数是可运行,运行结果是正确的,又如何保证写出来的代码性能是好的,我们知道单元测试的重点在于发现程序设计或实现的逻辑错误,使问题及早 ...
- js replace替换一段文本中所有的相同字符
在html<textarea>标签中回车换行的代码是: \n,html编辑器的回车换行是:\r\n或是\n. 下图是存入后台的<textarea>的文本,需要在页面上显示出来, ...
- JDK(七)JDK1.8源码分析【集合】TreeMap
本文转载自joemsu,原文链接 [JDK1.8]JDK1.8集合源码阅读——TreeMap(二) TreeMap是JDK中一种排序的数据结构.在这一篇里,我们将分析TreeMap的数据结构,深入理解 ...
- ZXing 二维码应用
1.导入zxing代码和包 2.下面的类是解析二维码的主要类. package com.gaint.nebula.interaction.ui.zxing; import java.io.IOExce ...
- HDU 2307 贪心之活动安排问题
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2037 今年暑假不AC Time Limit: 2000/1000 MS (Java/Others) ...
- SaltStack 自动化工具
1.服务端安装master: # yum -y install salt-master # yum -y install salt-minion 2.客户端安装minion: # yum -y ins ...