wIO瓶颈

http://www.agildata.com/database-sharding/

What Drives the Need for Database Sharding?

Database Sharding is a highly scalable approach for improving the throughput and overall performance of high-transaction, large database-centric business applications. Since the inception of the relational database, application engineers and architects have required ever-increasing performance and capacity, based on the simple observation that business databases generally grow in size over time. Adding to this general trend is the extreme expansion of business data due to the evolution of the Internet economy, the Information Age, and the prevalence of high-volume electronic commerce.

As any experienced database administrator or application developer knows all too well, it is axiomatic that as the size and transaction volume of the database tier incurs linear growth, response times tend to grow logarithmically. This is shown in the following diagram:

Figure 1. The growth in database transactions and volumes has a large impact on response times.

The reasons for the performance and scalability challenges are inherent to the fundamental design of the database management systems themselves. Databases rely heavily on the primary three components of any computer:

  • CPU
  • Memory
  • Disk

Through benchmark tests that we have performed, we know that each of these elements on a single server can only scale to a given point, and then other measures must be taken. While it is clear that disk I/O is the primary bottleneck, as database management systems have improved they also continue to take greater advantage of CPU and memory. In fact, we have observed that it is the matching of these three factors that determines maximum performance. In other words, you cannot add an unlimited number of CPUs (or processing cores) and see a commensurate increase in performance without also improving the memory capacity and performance of the disk drive subsystem. It is also common to see a diminishing return as resources are added to a single database server. These factors are especially true in mixed-use business transaction systems; systems that perform a high volume of read and write transactions, as well as supporting generalized business reporting tasks.

Therefore, as business applications gain sophistication and continue to grow in demand, architects, developers and database administrators have been presented with a constant challenge of maintaining database performance for mission critical systems. This landscape drives the need for Database Sharding.

What Drives the Need for Database Sharding? DATABASE SHARDING的更多相关文章

  1. GTID复制报错处理:Last_Error: Error 'Can't drop database 'test'; database doesn't exist' on query

    创建GTID主从连接: mysql, master_user; 报错显示: Slave_IO_Running: Yes Slave_SQL_Running: No Last_Error: Error ...

  2. The Rise of Database Sharding DATABASE SHARDING

    w玻璃碎片.0共享 http://www.agildata.com/database-sharding/ The Rise of Database Sharding The concept of Da ...

  3. Last_SQL_Error: Error 'Can't drop database 'ABC'; database doesn't exist' on query. Default database: 'ABC'. Query: 'drop database ABC'

    查看从库状态发现报错: show slave status\G; 发现是主库上删除了一个数据库,但是从库上面没有,从库执行这个语句的时候失败报错. 解决方法: 停止从库 stop slave; 创建语 ...

  4. CMU Database Systems - Database Recovery

    数据库数据丢失的典型场景如下, 数据commit后,还没有来得及flush到disk,这时候crash就会丢失数据 当然这只是fail的一种情况,DataBase Recovery要讨论的是,在各种f ...

  5. Database Sharding Challenges DATABASE SHARDING

    w分布式查询.数据聚合.跨碎片join是可且应避免的.自增主键管理.基于-会话/事务/语句-选择碎片.通过-主键/模块/碎片索引-碎片化数据 http://www.agildata.com/datab ...

  6. [转]Amazon DynamoDB – a Fast and Scalable NoSQL Database Service Designed for Internet Scale Applications

    This article is from blog of Amazon CTO Werner Vogels. -------------------- Today is a very exciting ...

  7. SQL Server 2014 Database Mail重复发送邮件特殊案例

    在一数据库服务器(Microsoft SQL Server 2014 (SP2) (KB3171021) - 12.0.5000.0 (X64))发现有个作业调用Database Mail发送邮件时, ...

  8. Azure SQL Database (19) Stretch Database 概览

    <Windows Azure Platform 系列文章目录>  Azure SQL Database (19) Stretch Database 概览      Azure SQL Da ...

  9. MongoDB 创建 Database 和 Collection

    在开始使用MongoDB(Version:3.2.9)之前,必须首先在MongoDB中创建 Database 和 Collection.Database是相互独立的,每个Database都有自己的Co ...

随机推荐

  1. struct iphdr中的__LITTLE_ENDIAN_BITFIELD和__BIG_ENDIAN_BITFIELD

    __LITTLE_ENDIAN_BITFIELD表示小端序,__BIG_ENDIAN_BITFIELD表示大端序. /usr/include/linux/ip.h中有一段代码定义了ip首部的结构体,例 ...

  2. asp.net mvc中加入log4net记录错误日志

    直接上代码示例:https://share.weiyun.com/aff36f2547514cfefe129ebb8ccb28ef 首先添加加log4net的dll,推荐用nuget.... 贴上配置 ...

  3. day19<异常&File类>

    异常(异常的概述和分类) 异常(JVM默认是如何处理异常的) 异常(try...catch的方式处理异常1) 异常(try...catch的方式处理异常2) 异常(编译期异常和运行期异常的区别) 异常 ...

  4. Android-Gallery GridView ImageSwitcher 使用

    http://liangruijun.blog.51cto.com/3061169/647355/ http://blog.csdn.net/wantianwen/article/details/23 ...

  5. List自定义排序

    List自定义排序我习惯根据Collections.sort重载方法来实现,下面我只实现自己习惯方式.还有一种就是实现Comparable接口. 挺简单的,直接上代码吧. package com.so ...

  6. java日志之slf4j与logback简单使用

    最近在开发遇到日志是使用slf4j与logback.xml的配置,所以就记录下来了. 1.导入这几个jar包: Logback 分为三个模块:logback-core,logback-classic, ...

  7. 【RF库Collections测试】Get Dictionary Values

    Name:Get Dictionary ValuesSource:Collections <test library>Arguments:[ dictionary ]Returns val ...

  8. JVM优化(一)-- 入门

    一.JVM的概念 JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现 ...

  9. NUC970烧录文件系统

    燒錄U-Boot依照下列步驟將編譯完成的U-Boot燒錄至NAND Flash/SPI Flash/eMMC 中.U-Boot的編譯方法請參考4.3章節.3.11.1 燒錄所需檔案4. u-boot. ...

  10. 教程Xcode 下编译发布与提交App到AppStore

    The proplem of Prepare for Upload for App store upload Application App store 增加新应用的步骤. 1. 访问iTunesCo ...