Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造
题目链接:
http://codeforces.com/contest/606/problem/D
D. Lazy Student
time limit per test2 secondsmemory limit per test256 megabytes
#### 问题描述
> Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:
>
> The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.
>
> Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.
#### 输入
> The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.
>
> Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.
>
> It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.
#### 输出
> If Vladislav has made a mistake and such graph doesn't exist, print - 1.
>
> Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.
####样例输入
> 4 5
> 2 1
> 3 1
> 4 0
> 1 1
> 5 0
####样例输出
> 2 4
> 1 4
> 3 4
> 3 1
> 3 2
## 题意
> 给出n个点m条边,边不给起点和终点,只给权值,然后0表示不在最小生成树上,1表示在。并且生成树上的边刚好n-1条。构造一个图满足所有的条件,没有自环和重边,如果不存在,则输出-1,否则输出所有的边的起点和终点。
## 题解
> 首先,我们把最小生成树的高度限制为1,因为这样在后面连非树边的时候形成的环最小(只有三条边),这样能够很好的吧树边的权值独立开,创造更多合法的顶点对。然后,就是将树边,非树边分别按权值排个序,贪心的把非树边插到生成树里面,直到有一条非树边插不进去,则输出-1.否则输出最后的结果。
## 代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=1e5+10;
PII ans[maxn];
int n,m;
int main() {
scf("%d%d",&n,&m);
VPII a,b;
int id=1;
for(int i=0;i<m;i++){
int x,type;
scf("%d%d",&x,&type);
if(type==0) a.pb(mkp(x,i));
else{
b.pb(mkp(x,i));
ans[i]=mkp(1,++id);
}
}
sort(all(a));
sort(all(b));
int p=0;
int x=0,y=1,su=1;
for(int i=0;i<a.sz();i++){
if(y>=b.sz()||a[i].X<b[y].X){
su=0; break;
}
ans[a[i].Y]=mkp(ans[b[x].Y].Y,ans[b[y].Y].Y);
x++;
if(x==y){ x=0; y++; }
}
if(su==0) prf("-1\n");
else{
for(int i=0;i<m;i++) prf("%d %d\n",ans[i].X,ans[i].Y);
}
return 0;
}
//end-----------------------------------------------------------------------
Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造的更多相关文章
- Codeforces Round #335 (Div. 2) D. Lazy Student 贪心
D. Lazy Student Student Vladislav came to his programming exam completely unprepared as usual. He ...
- Codeforces Round #335 (Div. 2) D. Lazy Student 构造
D. Lazy Student Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/606/probl ...
- Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)
题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...
- Codeforces Round #335 (Div. 2) B. Testing Robots 水题
B. Testing Robots Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606 ...
- Codeforces Round #335 (Div. 1) C. Freelancer's Dreams 计算几何
C. Freelancer's Dreams Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contes ...
- Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 动态规划
C. Sorting Railway Cars Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/conte ...
- Codeforces Round #335 (Div. 2) A. Magic Spheres 水题
A. Magic Spheres Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606/ ...
- Codeforces Round #335 (Div. 2)
水 A - Magic Spheres 这题也卡了很久很久,关键是“至少”,所以只要判断多出来的是否比需要的多就行了. #include <bits/stdc++.h> using nam ...
- Codeforces Round #335 (Div. 2) A. Magic Spheres 模拟
A. Magic Spheres Carl is a beginner magician. He has a blue, b violet and c orange magic spheres. ...
随机推荐
- django的数据库操作-16
目录 增 1.save 2.create 查 1.基本查询 2.过滤查询 3. F对象 4. Q对象 5. 聚合函数 6. 排序 7. 关联查询 8. 关联+过滤查询 删 改 1. save 2. u ...
- 时间戳Unix timestamp
(1)定义 Unix时间戳(Unix timestamp),或称Unix时间(Unix time).POSIX时间(POSIX time),是一种时间表示方式,定义为从格林威治时间1970年01月01 ...
- 5.18-笨办法学python-习题17(文件拷贝)
from sys import argv from os.path import exists #又import了一个命令exists,这个命令将文件名字符串作为参数,如果文件存在返回TRUE,否则返 ...
- kaggle之员工离职分析
本文探讨的是kaggle中的一个案例-员工离职分析,从数据集中分析员工的离职原因,并发现其中的问题.数据主要包括影响员工离职的各种因素(工资.绩效.工作满意度.参加项目数.工作时长.是否升职.等)以及 ...
- Java程序设计 第16周 课堂实践
Java程序设计 第16周 课堂实践 -- 数据库2 课堂实践任务2 查询world数据库,获得人口超过500万的所有城市的列表. 代码分析 实现查询数据库需要我们修改Message.java,Mes ...
- linux 初学体验 20155317 王新玮
学习基于VirtualBox虚拟机安装Ubuntu图文教程在自己笔记本上安装Linux操作系统 通过询问同学和上网搜查百度,完成了虚拟机的安装,开始了linux的学习. 通过实践学习别出心裁的Linu ...
- 20155318 2016-2017-2《Java程序设计》课程总结
20155318 2016-2017-2<Java程序设计>课程总结 每周作业链接 预备作业1:亦师亦友--我所期望的师生关系,对专业的认识与期望等 预备作业2:没有了自主,学习的小船说翻 ...
- day5 RHCE
19 .配置 iSCSI 服务端 (***先做这个题目**,挂载重启,机器会挂掉) 配置server0提供一个iSCSI服务磁盘名为iqn.2014-11.com.example:server0,并 ...
- 理解依赖注入(Dependency Injection)
理解依赖注入 Yii2.0 使用了依赖注入的思想.正是使用这种模式,使得Yii2异常灵活和强大.千万不要以为这是很玄乎的东西,看完下面的两个例子就懂了. class SessionStorage { ...
- 三、Django安装和流程
一.MVC模式 MVC(Model-View-Controller),中文名“模型-视图-控制器”,是一个好的Web应用开发所遵循的模式,它有利于把Web应用的代码分解为易于管理的功能模块. M:Mo ...