uoj 36 玛里苟斯
【清华集训2014】玛里苟斯 - 题目 - Universal Online Judge
k=1,2,3,4,5各占20pts是提示
应当分开考虑
k=1
拆位,如果第i位有1,则有1/2的概率xor出来,得到(1<<i)的贡献
证明考虑若干个有1的数,找到偶数个1的概率
k=2
还是拆位
然后考虑二进制:(a1+a2+a3+...+ak)*(a1+a2+a3+..+ak)
根据完全平方展开
存在ai的平方和,还有所有两项的乘积再*2
分开考虑贡献的期望
a^2:1/2
2ab:1/4
a,b都是有1的位
注意,如果a,b出现的每一次都属于同一个数,那么概率是1/2
暴力枚举即可60^2
k>=3
不能再展开了,项数多而复杂。
另辟蹊径
发现,如果一个数可以被其他的数xor表示,那么这个数的存在与否不影响答案
有没有这个数的两种情况的所有组合都是相同的。
所以去掉这些数
线性基
只剩60个数
但是有答案<2^63
所以每个数最大2^20左右
否则有一个2^30,就至少贡献2^(30k)/2的值,直接爆
所以只剩下20个数,k越大越少
dfs爆搜即可
但是由于/2的存在,所以可能会爆long long
unsigned long long即可。
uoj 36 玛里苟斯的更多相关文章
- UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...
- UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...
- [UOJ]#36. 【清华集训2014】玛里苟斯
题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...
- UOJ#36. 【清华集训2014】玛里苟斯 线性基
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ ...
- uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概 ...
- uoj #5. 【NOI2014】动物园 kmp
#5. [NOI2014]动物园 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/5 Description 近日 ...
- 【UOJ#75】【UR #6】智商锁(矩阵树定理,随机)
[UOJ#75][UR #6]智商锁(矩阵树定理,随机) 题面 UOJ 题解 这种题我哪里做得来啊[惊恐],,, 题解做法:随机\(1000\)个点数为\(12\)的无向图,矩阵树定理算出它的生成树个 ...
- CSharpGL(36)通用的非托管数组排序方法
CSharpGL(36)通用的非托管数组排序方法 如果OpenGL要渲染半透明物体,一个方法是根据顶点到窗口的距离排序,按照从远到近的顺序依次渲染.所以本篇介绍对 UnmanagedArray< ...
- C#开发微信门户及应用(36)--微信卡劵管理的封装操作
前面几篇介绍了微信支付方面的内容,本篇继续微信接口的一些其他方面的内容:卡劵管理.卡劵管理是微信接口里面非常复杂的一个部分,里面的接口非常多,我花了不少时间对它进行了封装处理,重构优化等等工作,卡劵在 ...
随机推荐
- 性能测试工具——LoadRunner篇(一)
一.LoadRunner组件 1.Virtual User Generato——r录制最终用户业务流程并创建性能 2.Controller——组织.驱动.管理并发监控负载测试 3.Analysis—— ...
- 第五章Web应用与应用层协议
Web应用与应用层协议 本篇博文中的主要参考文献是<计算机网络高级教程>,分别是吴功宜老先生和吴英教授合著.这部教程是我研究生老师所推荐的网络必读科目,由于该教程讲解的基础知识详细,但内容 ...
- TPO-18 C1 Apply for a part-time job on campus
TPO-18 C1 Apply for a part-time job on campus 第 1 段 1.Listen to a conversation between a student and ...
- Python中元祖,列表,字典的区别
Python中有3种內建的数据结构:列表.元祖和字典: 1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目. 列表中的项目应该包括在方括号中,这样Python就知道 ...
- linux云主机小技巧
微信服务器安装 安装库 python 3.5环境下 pip安装web.py时 会报错 "no module named "utils" 等问题 更换命令为“pip ins ...
- leetcode个人题解——#40 Combination Sum2
思路:解法和39题类似,改动了两处: 1.因为题目要求每个元素只能出现一次(不代表每个数只能有一个,因为数据中会有重复的数字),所以代码中21行搜索时下一次循环的位置+1: 2.将临时存放答案的vec ...
- ES6的新特性(6)——正则的扩展
正则的扩展 RegExp 构造函数 在 ES5 中,RegExp构造函数的参数有两种情况. 第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag). var regex = ne ...
- 安装cocoa pods
1.移除现有Ruby默认源 $gem sources --remove https://rubygems.org/ 2.使用新的源 $gem sources -a https://ruby.taoba ...
- B-2阶段组员分数分配
组名: 新蜂 组长: 武志远 组员: 宫成荣 谢孝淼 杨柳 李峤 项目名称: java俄罗斯方块 武 武 武 武 杨 宫 宫 杨 宫 谢 李 杨 李 谢 李 谢 李 谢 杨 宫 扬 谢 宫 李 武 评 ...
- centOS7设置静态ip后无法上网的解决,【亲可测】
最近在VMware虚拟机里玩Centos,装好后发现上不了网.经过一番艰辛的折腾,终于找到出解决问题的方法了.最终的效果是无论是ping内网IP还是ping外网ip,都能正常ping通.方法四步走: ...