mapreduce中一个map多个输入路径
package duogemap;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class JoinJob {
public static final String DELIMITER = "\u0009";
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//多路径判断
if (args.length < 2) {
System.out.println("参数数量不对,至少两个以上参数:<数据文件输出路径>、<输入路径...>");
System.exit(1);
}
//输出结果路径
String dataOutput = args[0];
//多个路输入径
String[] inputs = new String[args.length - 1];
System.arraycopy(args, 1, inputs, 0, inputs.length);
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "join 测试");
job.setJarByClass(JoinJob.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//将输出路径和输入路径放入Path中
Path[] inputPathes = new Path[inputs.length];
for (int i = 0; i < inputs.length; i++) {
inputPathes[i] = new Path(inputs[i]);
}
Path outputPath = new Path(dataOutput);
FileInputFormat.setInputPaths(job, inputPathes);
FileOutputFormat.setOutputPath(job, outputPath);
job.waitForCompletion(true);
}
static class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
private String inputPath;
private String fileCode = "";
protected void setup(Context context) throws IOException, InterruptedException {
// 每个文件传进来时获得文件中属性前缀
FileSplit input = (FileSplit) context.getInputSplit();
inputPath = input.getPath().getName();
try {
//获得文件名
fileCode = inputPath.split("_")[0];
} catch (Exception e) {
e.printStackTrace();
}
}
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] values = value.toString().split(DELIMITER);
StringBuffer sb = new StringBuffer();
//将文件名拼接到value中,做reduce的判断标识
sb.append(fileCode + "#");
boolean first = true;
for (String v : values) {
if (!first) {
sb.append(v + DELIMITER);
}
first = false;
}
context.write(new Text(values[0]), new Text(sb.toString().substring(0, sb.toString().length() - 1)));
}
}
static class MyReducer extends Reducer<Text, Text, Text, Text> {
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
List<String> left = new ArrayList<String>();
List<String> right = new ArrayList<String>();
for (Text value : values) {
String[] vv = value.toString().split("#");
String fileCode = vv[0];
if (fileCode.equals("A.txt")) {
// 左表数据
left.add(vv[1]);
} else {
// 右表数据
right.add(vv[1]);
}
}
//只有当left和right都有数据是才会遍历
for (String l : left) {
for (String r : right) {
context.write(new Text(key), new Text(l + DELIMITER + r));
}
}
}
}
}
//首先准备数据:
//
//假设我们有2张表:
//
//表A(左表)数据:
//
//1 a
//2 b
//3 c
//3 d
//4 e
//6 f
//表B(右表)数据:
//1 10
//2 20
//3 30
//4 40
//4 400
//5 50
//我们需要得到的结果是:
//1 a 10
//2 b 20
//3 c 30
//3 d 30
//4 e 40
//4 e 400
mapreduce中一个map多个输入路径的更多相关文章
- Hadoop框架下MapReduce中的map个数如何控制
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinS ...
- MapReduce中的map个数
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs. ...
- MapReduce 中的Map后,sort不能对中文的key排序
今天写了一个用mapreduce求平均分的程序,结果是出来了,可是没有按照“学生名字”进行排序,如果是英文名字的话,结果是排好序的. 代码如下: package com.pro.bq; import ...
- java中一个Map要找到值Value最小的那个元素的方法
import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.Map ...
- 【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?
1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3. ...
- MapReduce中combine、partition、shuffle的作用是什么
http://www.aboutyun.com/thread-8927-1-1.html Mapreduce在hadoop中是一个比較难以的概念.以下须要用心看,然后自己就能总结出来了. 概括: co ...
- mapreduce 中 map数量与文件大小的关系
学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小 ...
- 求一个Map中最大的value值,同时列出键,值
求一个Map中最大的value值,同时列出键,值 方法1. public static void main(String[] args){ Map map=new HashMap(); map.p ...
- 信1705-2 软工作业最大重复词查询思路: (1)将文章(一个字符串存储)按空格进行拆分(split)后,存储到一个字符串(单词)数组中。 (2)定义一个Map,key是字符串类型,保存单词;value是数字类型,保存该单词出现的次数。 (3)遍历(1)中得到的字符串数组,对于每一个单词,考察Map的key中是否出现过该单词,如果没出现过,map中增加一个元素,key为该单词,value为1(
通过学习学会了文本的访问,了解一点哈希表用途.经过网上查找做成了下面查询文章重复词的JAVA程序. 1 思 思路: (1)将文章(一个字符串存储)按空格进行拆分(split)后,存储到一个字符串(单词 ...
随机推荐
- CSS3 border-radius边框圆角
在CSS3中提供了对边框进行圆角设定的支持,可对边框1~4个角进行圆角样式设置. 目录 1. 介绍 2. value值的格式和类型 3. border-radius 1~4个参数说明 4. 在线示例 ...
- 利用on和off方法编写高效的js代码
先说下将这个话题的起因:最近发现公司的功能代码,很多在dom对象删除以后,其声明的绑定在window上的resize事件还一直存在,导致相同的功能代码执行了几次.对于我这种轻微代码洁癖的人来说,简直是 ...
- 用scikit-learn学习BIRCH聚类
在BIRCH聚类算法原理中,我们对BIRCH聚类算法的原理做了总结,本文就对scikit-learn中BIRCH算法的使用做一个总结. 1. scikit-learn之BIRCH类 在scikit-l ...
- Android 剪贴板详解
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Clipboard 如本文有助于你理解 Android 剪贴板,不妨给我一个 Star.对于码农而言, ...
- inline-block元素间距问题的几种解决方案
不知道大家有没有碰到过设置了display:inline-block;的几个相邻元素之间有几px间距的问题,这里提供几种简单实用的解决方法,希望能够帮到大家! 方法1. 将<li>标签 ...
- 为IEnumerable<T>添加RemoveAll<IEnumerable<T>>扩展方法--高性能篇
最近写代码,遇到一个问题,微软基于List<T>自带的方法是public bool Remove(T item);,可是有时候我们可能会用到诸如RemoveAll<IEnumerab ...
- Oracle数据库该如何着手优化一个SQL
这是个终极问题,因为优化本身的复杂性实在是难以总结的,很多时候优化的方法并不是用到了什么高深莫测的技术,而只是一个思想意识层面的差异,而这些都很可能连带导致性能表现上的巨大差异. 所以有时候我们应该先 ...
- 小兔Java教程 - 三分钟学会Java文件上传
今天群里正好有人问起了Java文件上传的事情,本来这是Java里面的知识点,而我目前最主要的精力还是放在了JS的部分.不过反正也不麻烦,我就专门开一贴来聊聊Java文件上传的基本实现方法吧. 话不多说 ...
- 深入.NET平台和C#编程总结大全
对于初学者的你,等到你把这个看完之后就更清楚地认知.NET和C#编程了,好了废话不多说,开始吧! ...
- css样式之border-radius
border-radius 属性设置边框的园角 可能的值:像素,百分比 扩展延伸 html代码 <div></div> css代码 div { height: 200px; w ...