mapreduce中一个map多个输入路径
package duogemap;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class JoinJob {
public static final String DELIMITER = "\u0009";
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//多路径判断
if (args.length < 2) {
System.out.println("参数数量不对,至少两个以上参数:<数据文件输出路径>、<输入路径...>");
System.exit(1);
}
//输出结果路径
String dataOutput = args[0];
//多个路输入径
String[] inputs = new String[args.length - 1];
System.arraycopy(args, 1, inputs, 0, inputs.length);
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "join 测试");
job.setJarByClass(JoinJob.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//将输出路径和输入路径放入Path中
Path[] inputPathes = new Path[inputs.length];
for (int i = 0; i < inputs.length; i++) {
inputPathes[i] = new Path(inputs[i]);
}
Path outputPath = new Path(dataOutput);
FileInputFormat.setInputPaths(job, inputPathes);
FileOutputFormat.setOutputPath(job, outputPath);
job.waitForCompletion(true);
}
static class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
private String inputPath;
private String fileCode = "";
protected void setup(Context context) throws IOException, InterruptedException {
// 每个文件传进来时获得文件中属性前缀
FileSplit input = (FileSplit) context.getInputSplit();
inputPath = input.getPath().getName();
try {
//获得文件名
fileCode = inputPath.split("_")[0];
} catch (Exception e) {
e.printStackTrace();
}
}
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] values = value.toString().split(DELIMITER);
StringBuffer sb = new StringBuffer();
//将文件名拼接到value中,做reduce的判断标识
sb.append(fileCode + "#");
boolean first = true;
for (String v : values) {
if (!first) {
sb.append(v + DELIMITER);
}
first = false;
}
context.write(new Text(values[0]), new Text(sb.toString().substring(0, sb.toString().length() - 1)));
}
}
static class MyReducer extends Reducer<Text, Text, Text, Text> {
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
List<String> left = new ArrayList<String>();
List<String> right = new ArrayList<String>();
for (Text value : values) {
String[] vv = value.toString().split("#");
String fileCode = vv[0];
if (fileCode.equals("A.txt")) {
// 左表数据
left.add(vv[1]);
} else {
// 右表数据
right.add(vv[1]);
}
}
//只有当left和right都有数据是才会遍历
for (String l : left) {
for (String r : right) {
context.write(new Text(key), new Text(l + DELIMITER + r));
}
}
}
}
}
//首先准备数据:
//
//假设我们有2张表:
//
//表A(左表)数据:
//
//1 a
//2 b
//3 c
//3 d
//4 e
//6 f
//表B(右表)数据:
//1 10
//2 20
//3 30
//4 40
//4 400
//5 50
//我们需要得到的结果是:
//1 a 10
//2 b 20
//3 c 30
//3 d 30
//4 e 40
//4 e 400
mapreduce中一个map多个输入路径的更多相关文章
- Hadoop框架下MapReduce中的map个数如何控制
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinS ...
- MapReduce中的map个数
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs. ...
- MapReduce 中的Map后,sort不能对中文的key排序
今天写了一个用mapreduce求平均分的程序,结果是出来了,可是没有按照“学生名字”进行排序,如果是英文名字的话,结果是排好序的. 代码如下: package com.pro.bq; import ...
- java中一个Map要找到值Value最小的那个元素的方法
import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.Map ...
- 【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?
1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3. ...
- MapReduce中combine、partition、shuffle的作用是什么
http://www.aboutyun.com/thread-8927-1-1.html Mapreduce在hadoop中是一个比較难以的概念.以下须要用心看,然后自己就能总结出来了. 概括: co ...
- mapreduce 中 map数量与文件大小的关系
学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小 ...
- 求一个Map中最大的value值,同时列出键,值
求一个Map中最大的value值,同时列出键,值 方法1. public static void main(String[] args){ Map map=new HashMap(); map.p ...
- 信1705-2 软工作业最大重复词查询思路: (1)将文章(一个字符串存储)按空格进行拆分(split)后,存储到一个字符串(单词)数组中。 (2)定义一个Map,key是字符串类型,保存单词;value是数字类型,保存该单词出现的次数。 (3)遍历(1)中得到的字符串数组,对于每一个单词,考察Map的key中是否出现过该单词,如果没出现过,map中增加一个元素,key为该单词,value为1(
通过学习学会了文本的访问,了解一点哈希表用途.经过网上查找做成了下面查询文章重复词的JAVA程序. 1 思 思路: (1)将文章(一个字符串存储)按空格进行拆分(split)后,存储到一个字符串(单词 ...
随机推荐
- 哪种缓存效果高?开源一个简单的缓存组件j2cache
背景 现在的web系统已经越来越多的应用缓存技术,而且缓存技术确实是能实足的增强系统性能的.我在项目中也开始接触一些缓存的需求. 开始简单的就用jvm(java托管内存)来做缓存,这样对于单个应用服务 ...
- 实时的.NET程序错误监控产品Exceptionless
Exceptionless可以对ASP.NET, Web API, WebForms, WPF, Console, 和 MVC 应用提供错误监控.上传.报表服务.使用时需要在Exceptionless ...
- Asp.Net MVC中使用StreamReader读取“Post body”之应用场景。
场景:有三个市场(Global.China.USA),对前台传过来的数据有些验证需要细化到每个市场去完成. 所以就出现了基类(Global)和派生类(China.USA) 定义基类(Global)Pe ...
- javascript中的继承与深度拷贝
前言 本篇适合前端新人,下面开始...... 对于前端新手来说(比如博主),每当对js的对象做操作时,都是一种痛苦,原因就是在于对象的赋值是引用的传递,并非值的传递,虽然看上去后者赋值给了前者,他们就 ...
- Velocity初探小结--velocity使用语法详解
做java开发的朋友一般对JSP是比较熟悉的,大部分人第一次学习开发View层都是使用JSP来进行页面渲染的,我们都知道JSP是可以嵌入java代码的,在远古时代,java程序员甚至在一个jsp页面上 ...
- Chrome V8引擎系列随笔 (1):Math.Random()函数概览
先让大家来看一幅图,这幅图是V8引擎4.7版本和4.9版本Math.Random()函数的值的分布图,我可以这么理解 .从下图中,也许你会认为这是个二维码?其实这幅图告诉我们一个道理,第二张图的点的分 ...
- JVM类加载
JVM的类加载机制就是:JVM把描述类的class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被JVM直接使用的Java类型 ClassLoader JVM中的ClassLoade ...
- GOF23设计模式之单例模式
·核心作用: -保证一个类只有一个实例,并且提供一个访问该实例的全局访问点. ·常见应用场景: -Windows的Task Manager(任务管理器)就是很典型的单例模式 -Windows的Recy ...
- GSD_WeiXin(高仿微信)应用源码
高仿微信计划:已经实现功能 1.微信首页(cell侧滑编辑.下拉眼睛动画.下拉拍短视频.点击进入聊天详情界面) 2.通讯录(联系人字母排序.搜索界面) 3.发现(朋友圈) 4.我(界面) 待实现功能( ...
- Eclipse使用Git教程
A:点击Window--->Show view--->other..--->Git Repositories--->[OK] B:克隆码云上的代码仓库 C:选择对应目录存储你的 ...