【bzoj1951】 Sdoi2010—古代猪文
http://www.lydsy.com/JudgeOnline/problem.php?id=1951 (题目链接)
题意
废话一堆。。求解:$$g^{\sum_{d|n} C_n^d}~mod~p$$
Solution
真的是数论经典题,什么都用上了。
因为费马小定理,每$p-1$个$g$相乘会得到$1$,那么容易得到:
\begin{aligned} \displaystyle ans &= g^{\sum_{d|n} C_n^d}~mod~p \\ &=g^{\sum_{d|n} C_n^d~mod~(p-1)}~mod~p \end{aligned}
所以现在关键是求:$$\sum_{d|n} C_n^d~mod~(p-1)$$
大组合数取模,Lucas定理,可是$p-1$并不是一个质数,怎么办呢。我们考虑用中国剩余定理,先将$p-1$质因数分解,再分别在模各个质因子的的条件下求出余数,最后用中国剩余定理合并得解。
代码
// bzoj1951
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define P 999911659
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std; int t[4]={2,3,4679,35617};
int n,g,r[4],fac[4][100010]; int power(LL a,int b,LL c) {
a%=c;
LL res=1;
while (b) {
if (b&1) res=res*a%c;
b>>=1;a=a*a%c;
}
return res;
}
int C(int n,int m,int p) {
if (m<n) return 0;
return (LL)(fac[p][m]*power((LL)fac[p][n]*fac[p][m-n],t[p]-2,t[p]))%t[p];
}
int Lucas(int n,int m,int p) {
if (m==0) return 1;
return C(n%t[p],m%t[p],p)*Lucas(n/t[p],m/t[p],p)%t[p];
}
void exgcd(int a,int b,LL &x,LL &y) {
if (b==0) {x=1,y=0;return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int CRT() {
LL x,y,M=t[0],R=r[0];
for (int i=1;i<4;i++) {
int mm=t[i],rr=r[i];
exgcd(M,mm,x,y);
x=((rr-R)*x%mm+mm)%mm;
R+=M*x;
M*=mm;
}
return R;
}
int main() {
free("aaa");
scanf("%d%d",&n,&g);
if (g==P) {printf("0");return 0;}
for (int i=0;i<4;i++) {
fac[i][0]=1;
for (int j=1;j<=t[i];j++)
fac[i][j]=fac[i][j-1]*j%t[i];
}
for (int i=0;i<4;i++)
for (int j=1;j*j<=n;j++) if (n%j==0) {
r[i]=(r[i]+Lucas(j,n,i))%t[i];
if (j*j!=n) r[i]=(r[i]+Lucas(n/j,n,i))%t[i];
}
printf("%d",power(g,CRT(),P));
fclose(stdin);fclose(stdout);
return 0;
}
【bzoj1951】 Sdoi2010—古代猪文的更多相关文章
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951[SDOI2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
- bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)
https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...
- bzoj1951 [Sdoi2010]古代猪文 ——数论综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
随机推荐
- 解析百度搜索结果链接的url,获取真正的url
通常,在百度输入关键词搜索出现的列表页,点击目标链接,然而跳转的时候却是百度地址,经过百度解析,才真的跳到目标页面. 在SEO中,经常需要看下自己的网站排名,又不想手动每天手动去点,可用以下方法去得到 ...
- linux磁盘分区-系统安装
零 系统下载: https://lists.centos.org/pipermail/centos-announce/2016-May/021895.html 往下拉可以看到 一 系统安装 1, 2, ...
- noi1696 逆波兰表达式
1696:逆波兰表达式 http://noi.openjudge.cn/ch0303/1696/ 总时间限制: 1000ms 内存限制: 65536kB 描述 逆波兰表达式是一种把运算符前置的算术 ...
- NOI2018准备Day4
上午9点20至11点50就做出了一道题,一个很基础的二分挡住了,原因是浮点数精度问题的处理,现在还搞不懂,为什么用double存进去两位小数过不了,用double存进去两位小数再*100再/100就能 ...
- &12 二叉搜索树
#1,定义 二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的 ...
- CI(CodeIgniter)框架入门教程——第二课 初始MVC
本文转载自:http://www.softeng.cn/?p=53 今天的主要内容是,使用CodeIgniter框架完整的MVC内容来做一个简单的计算器,通过这个计算器,让大家能够体会到我在第一节课中 ...
- 用 canvas 做个好玩的网站背景
不知不觉又好久没更过博客了,老调新弹一下,之前做的一个小效果,觉得蛮有意思的,也有朋友问是怎么做的,就分享一下,写个博文吧. 先上demo吧:http://whxaxes.github.io/canv ...
- 备忘:powerbroker运行一个命令
pbrun su<space>-<space><taget user name> example: pbrun su - pmsdev
- 35-less 简明笔记
分屏显示文本文件 less [options] [file-list] less与more类似,但比more更加完善 例如:在显示一屏文本之后,less将显示提示副等待下一条命令的输入;可以向前或向后 ...
- Beta版本冲刺Day3
会议讨论: 628:已经将原本写在jsp中的所有界面修饰代码转移到了css文件中,同时当页面跳转的时候也不会出现崩溃的现象,并且已经解决了上次无法连接数据库的问题.但是又遇到了一些新的小问题,希望明天 ...