http://www.lydsy.com/JudgeOnline/problem.php?id=1951 (题目链接)

题意

  废话一堆。。求解:$$g^{\sum_{d|n} C_n^d}~mod~p$$

Solution

  真的是数论经典题,什么都用上了。

  因为费马小定理,每$p-1$个$g$相乘会得到$1$,那么容易得到:

\begin{aligned} \displaystyle ans &=  g^{\sum_{d|n} C_n^d}~mod~p  \\  &=g^{\sum_{d|n} C_n^d~mod~(p-1)}~mod~p  \end{aligned}

  所以现在关键是求:$$\sum_{d|n} C_n^d~mod~(p-1)$$

  大组合数取模,Lucas定理,可是$p-1$并不是一个质数,怎么办呢。我们考虑用中国剩余定理,先将$p-1$质因数分解,再分别在模各个质因子的的条件下求出余数,最后用中国剩余定理合并得解。

代码

// bzoj1951
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define P 999911659
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std; int t[4]={2,3,4679,35617};
int n,g,r[4],fac[4][100010]; int power(LL a,int b,LL c) {
a%=c;
LL res=1;
while (b) {
if (b&1) res=res*a%c;
b>>=1;a=a*a%c;
}
return res;
}
int C(int n,int m,int p) {
if (m<n) return 0;
return (LL)(fac[p][m]*power((LL)fac[p][n]*fac[p][m-n],t[p]-2,t[p]))%t[p];
}
int Lucas(int n,int m,int p) {
if (m==0) return 1;
return C(n%t[p],m%t[p],p)*Lucas(n/t[p],m/t[p],p)%t[p];
}
void exgcd(int a,int b,LL &x,LL &y) {
if (b==0) {x=1,y=0;return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int CRT() {
LL x,y,M=t[0],R=r[0];
for (int i=1;i<4;i++) {
int mm=t[i],rr=r[i];
exgcd(M,mm,x,y);
x=((rr-R)*x%mm+mm)%mm;
R+=M*x;
M*=mm;
}
return R;
}
int main() {
free("aaa");
scanf("%d%d",&n,&g);
if (g==P) {printf("0");return 0;}
for (int i=0;i<4;i++) {
fac[i][0]=1;
for (int j=1;j<=t[i];j++)
fac[i][j]=fac[i][j-1]*j%t[i];
}
for (int i=0;i<4;i++)
for (int j=1;j*j<=n;j++) if (n%j==0) {
r[i]=(r[i]+Lucas(j,n,i))%t[i];
if (j*j!=n) r[i]=(r[i]+Lucas(n/j,n,i))%t[i];
}
printf("%d",power(g,CRT(),P));
fclose(stdin);fclose(stdout);
return 0;
}

  

【bzoj1951】 Sdoi2010—古代猪文的更多相关文章

  1. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  2. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  3. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  6. bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...

  7. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  8. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

  9. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  10. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. 小tips: 使用&#x3000;等空格实现最小成本中文对齐

    一.重见天日第二春 11年的时候,写了篇文章“web页面相关的一些常见可用字符介绍”,这篇文章里面藏了个好东西,就是使用一些空格实现个数不等的中文对齐或等宽.见下表: 字符以及HTML实体 描述以及说 ...

  2. Jenkins持续集成

    Jenkins持续集成 & .NET   最近受累于测试环境每次发布都很麻烦,而且我们有多个测试环境,因此专门抽时间做了Jenkins的配置和研究. 折腾了两天终于绿灯以后,先来个截图,Blu ...

  3. nginx图片处理相关

    nginx本身有支持图片处理的模块,通过外部插件也可以实现此功能. libgd的安装 前提是要有libgd的库文件, (1)去官网访问主页没问题,下载文件还是FQ下的,为了方便大家提供一个链接:htt ...

  4. HAXM VT-X (与Hype-V冲突)

    之前一直使用vs emulator. 感觉性能各方面都比较好, 但在我更新完电脑后不知道什么原因各种起不来...  无奈之下想回到Google自带的模拟器. 然后发现intel haxm一直安装失败. ...

  5. window.location.href = window.location.href 跳转无反应 a 超链接 onclick 点击跳转无反应

    错误写法 , 主要是在 href="#"这里 <a href="#" id="send" onclick="return b ...

  6. 用Dart&Henson玩转Activity跳转

    用Dart&Henson玩转Activity跳转 Extra是Android标准的组件之间(Activity/Fragment/Service等)传递数据的方式.本文介绍了开源项目Dart的使 ...

  7. des解密不完整,前面几位是乱码的解决办法

    在工作中遇到的Des解密问题,第三方发来的数据需要我们进行des解密,但是解密的结果前几位始终是乱码.废了半天劲,终于找到了问题所在. 下面先介绍一下des,了解des的同学可以直接看下面的解决办法. ...

  8. ASP.NET MVC3入门教程之参数(数据)传递

    本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=98&extra=page%3D1 MVC模式的参数(数据)传递 ...

  9. [译]用AngularJS构建大型ASP.NET单页应用(二)

    原文地址:http://www.codeproject.com/Articles/808213/Developing-a-Large-Scale-Application-with-a-Single 客 ...

  10. Html.BeginForm

    该方法用于构建一个From表单的开始,他的构造方法为: Html.BeginForm("ActionName","ControllerName",FormMet ...