http://www.lydsy.com/JudgeOnline/problem.php?id=1951 (题目链接)

题意

  废话一堆。。求解:$$g^{\sum_{d|n} C_n^d}~mod~p$$

Solution

  真的是数论经典题,什么都用上了。

  因为费马小定理,每$p-1$个$g$相乘会得到$1$,那么容易得到:

\begin{aligned} \displaystyle ans &=  g^{\sum_{d|n} C_n^d}~mod~p  \\  &=g^{\sum_{d|n} C_n^d~mod~(p-1)}~mod~p  \end{aligned}

  所以现在关键是求:$$\sum_{d|n} C_n^d~mod~(p-1)$$

  大组合数取模,Lucas定理,可是$p-1$并不是一个质数,怎么办呢。我们考虑用中国剩余定理,先将$p-1$质因数分解,再分别在模各个质因子的的条件下求出余数,最后用中国剩余定理合并得解。

代码

// bzoj1951
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define P 999911659
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std; int t[4]={2,3,4679,35617};
int n,g,r[4],fac[4][100010]; int power(LL a,int b,LL c) {
a%=c;
LL res=1;
while (b) {
if (b&1) res=res*a%c;
b>>=1;a=a*a%c;
}
return res;
}
int C(int n,int m,int p) {
if (m<n) return 0;
return (LL)(fac[p][m]*power((LL)fac[p][n]*fac[p][m-n],t[p]-2,t[p]))%t[p];
}
int Lucas(int n,int m,int p) {
if (m==0) return 1;
return C(n%t[p],m%t[p],p)*Lucas(n/t[p],m/t[p],p)%t[p];
}
void exgcd(int a,int b,LL &x,LL &y) {
if (b==0) {x=1,y=0;return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int CRT() {
LL x,y,M=t[0],R=r[0];
for (int i=1;i<4;i++) {
int mm=t[i],rr=r[i];
exgcd(M,mm,x,y);
x=((rr-R)*x%mm+mm)%mm;
R+=M*x;
M*=mm;
}
return R;
}
int main() {
free("aaa");
scanf("%d%d",&n,&g);
if (g==P) {printf("0");return 0;}
for (int i=0;i<4;i++) {
fac[i][0]=1;
for (int j=1;j<=t[i];j++)
fac[i][j]=fac[i][j-1]*j%t[i];
}
for (int i=0;i<4;i++)
for (int j=1;j*j<=n;j++) if (n%j==0) {
r[i]=(r[i]+Lucas(j,n,i))%t[i];
if (j*j!=n) r[i]=(r[i]+Lucas(n/j,n,i))%t[i];
}
printf("%d",power(g,CRT(),P));
fclose(stdin);fclose(stdout);
return 0;
}

  

【bzoj1951】 Sdoi2010—古代猪文的更多相关文章

  1. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  2. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  3. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  6. bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...

  7. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  8. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

  9. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  10. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. PAT 1029. 旧键盘(20)

    旧键盘上坏了几个键,于是在敲一段文字的时候,对应的字符就不会出现.现在给出应该输入的一段文字.以及实际被输入的文字,请你列出肯定坏掉的那些键. 输入格式: 输入在2行中分别给出应该输入的文字.以及实际 ...

  2. Html5 Egret游戏开发 成语大挑战(四)选关界面

    通过前面的开始界面基本上了解了eui的使用方法,可以简单快速的制作一个UI界面,本篇使用第二界面选关界面展示更为难一点的代码控制,来展现关卡地图的内容,请确保素材和资源完整,可以在前面的教程中找到下载 ...

  3. 清北学堂2017NOIP冬令营入学测试P4747 D’s problem(d)

    时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题 描述 题目描述 小D是一名魔法师,它最喜欢干的事就是对批判记者了. 这次记者招待会上,记者对 ...

  4. jquery选择器空格与大于号、加号与波浪号的区别

    空格:$('parent childchild')表示获取parent下的所有的childchild节点,所有的子孙. 大于号:$('parent > child')表示获取parent下的所有 ...

  5. 利用Spring的@Async异步处理改善web应用中耗时操作的用户体验

    Web应用中,有时会遇到一些耗时很长的操作(比如:在后台生成100张报表再呈现,或 从ftp下载若干文件,综合处理后再返回给页面下载),用户在网页上点完按钮后,通常会遇到二个问题:页面超时.看不到处理 ...

  6. Safari 下用 "location.href = filePath" 实现下载功能的诡异 bug

    Safari 下的一些诡异 bug 我们已经领教一二,比如前文中说的 无痕浏览模式下使用 localStorage 的 API 就会报错.今天我们要讲的是利用 location.href = file ...

  7. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  8. Oracle sql develpoer

    Oracle SQL Developer是针对Oracle数据库的交互式开发环境(IDE)     Oracle SQL Developer简化了Oracle数据库的开发和管理. SQL Develo ...

  9. dblink连接的目标端 session不断的问题。

    来源于:http://blog.itpub.net/22782896/viewspace-676842/ 1.在使用了dblink的存储过程中,可以显示的手动关闭dblink连接,具体写法如下(测试存 ...

  10. Servlet从本地文件中读取图片,并显示在页面中

    import java.io.IOException; import javax.servlet.ServletException; import javax.servlet.http.HttpSer ...