[LintCode] Pow(x, n) 求x的n次方
Implement pow(x, n).
Notice
You don't need to care about the precision of your answer, it's acceptable if the expected answer and your answer 's difference is smaller than 1e-3
.
Pow(2.1, 3) = 9.261
Pow(0, 1) = 0
Pow(1, 0) = 1
LeetCode上的原题,请参见我之前的博客Pow(x, n)。
解法一:
class Solution {
public:
/**
* @param x the base number
* @param n the power number
* @return the result
*/
double myPow(double x, int n) {
if (n == ) return ;
double half = myPow(x, n / );
if (n % == ) return half * half;
else if (n > ) return half * half * x;
else return half * half / x;
}
};
解法二:
class Solution {
public:
/**
* @param x the base number
* @param n the power number
* @return the result
*/
double myPow(double x, int n) {
if (n == ) return ;
if (n == ) return x;
if (n == -) return / x;
return myPow(x, n / ) * myPow(x, n - n / );
}
};
[LintCode] Pow(x, n) 求x的n次方的更多相关文章
- [LeetCode] Pow(x, n) 求x的n次方
Implement pow(x, n). 这道题让我们求x的n次方,如果我们只是简单的用个for循环让x乘以自己n次的话,未免也把LeetCode上的想的太简单了,一句话形容图样图森破啊.OJ因超时无 ...
- [LeetCode] 50. Pow(x, n) 求x的n次方
Implement pow(x, n), which calculates x raised to the power n(xn). Example 1: Input: 2.00000, 10 Out ...
- 50 Pow(x, n)(求x的n次方Medium)
题目意思:x为double,n为int,求x的n次方 思路分析:直接求,注意临界条件 class Solution { public: double myPow(double x, int n) { ...
- Quick Pow: 如何快速求幂
今天讲个有趣的算法:如何快速求 \(n^m\),其中 n 和 m 都是整数. 为方便起见,此处假设 m >= 0,对于 m < 0 的情况,求出 \(n^{|m|}\) 后再取倒数即可. ...
- C语言求x的y次方,自定义函数,自己的算法
我是一名高二中学生,初中时接触电脑,非常酷爱电脑技术,自己百度学习了有两年多了,编程语言也零零散散的学习了一点,想在大学学习计算机专业,所以现在准备系统的学习C语言,并在博客中与大家分享我学习中的心得 ...
- 44. log(n)求a的n次方[power(a,n)]
[题目] 实现函数double Power(double base, int exponent),求base的exponent次方,不需要考虑溢出. [分析] 这是一道看起来很简单的问题,很容易写出如 ...
- [华为机试练习题]50.求M的N次方的最后三位
题目 描写叙述: 正整数M 的N次方有可能是一个很大的数字,我们仅仅求该数字的最后三位 例1: 比方输入5和3 ,5的3次方为125.则输出为125 例2: 比方输入2和10 2的10次方为1024 ...
- 求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)
昨天做了一个题,简化题意后就是求2的n次方对1e9+7的模,其中1<=n<=10100000.这个就算用快速幂加大数也会超时,查了之后才知道这类题是对费马小定理的考察. 费马小定理:假如p ...
- 使用分治法求X的N次方,时间效率为lgN
最近在看MIT的算法公开课,讲到分治法的求X的N次方时,只提供了数学思想,于是自己把代码写了下,虽然很简单,还是想动手写一写. int powerN(int x,int n){ if(n==0){ r ...
随机推荐
- bbed的使用--查看数据文件信息 & sid信息
1.得到文件的块大小和数据块个数 在Linux和Unix上,oracle提供了一个小工具dbfsize用于查看文件块大小 (可以参看[ID:360032.1]How to detect and fix ...
- 11g新特性-概述 (转)
一.新特性提纲 1.数据库管理部分 ◆数据库重演(Database Replay) 这一特性可以捕捉整个数据的负载,并且传递到一个从备份或者standby数据库中创建的测试数据库上,然后重演负责以测试 ...
- [荐]jquery插件开发入门
http://www.cnblogs.com/Wayou/p/jquery_plugin_tutorial.html $.fn.myPlugin = function() { //在这里面,this指 ...
- BZOJ 1861: [Zjoi2006]Book 书架 splay
1861: [Zjoi2006]Book 书架 Description 小T有一个很大的书柜.这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列.她用1到n的正整数给每本书都编了号. 小T在看书 ...
- ObCallback回调钩子检测
ObCallback回调钩子检测 2013-12-20 Nie.Meining Ring0 在 PatchGuard 的摧残下,通过 ObRegisterCallbacks 函数注册回调钩子已经成了 ...
- CF735C 数论\平衡树叶子节点的最大深度\贪心\斐波那契\条件归一化
http://codeforces.com/problemset/problem/735/C 题意..采用淘汰赛制..只要打输就退出比赛..而且只有两个选手打过的场数 相差不超过1才能比赛..最后问你 ...
- jdk1.7和Android Studio2.0的问题
提示的错误 Error:Execution failed for task ':app:transformClassesWithDexForDebug'.> com.android.build. ...
- jekyll bootstrap
你还在纠结使用那个博客系统吗?或者为没有自己的服务器和专属域名而感到无奈?也许jekyll bootstrap是你的最终解决方案,使用它,你就可以像写代码一样写博客.本文将为你详细介绍ubuntu下的 ...
- H5危险的文件上传对话框
文件对话框 文件上传对话框是一直以来就存在的网页控件. 到了 HTML5 时代,增加了更多的功能,例如支持文件多选.Chrome 甚至还支持「上传文件夹」这一私有特征: <input type= ...
- Java调优经验谈
对于调优这个事情来说,一般就是三个过程: 性能监控:问题没有发生,你并不知道你需要调优什么?此时需要一些系统.应用的监控工具来发现问题. 性能分析:问题已经发生,但是你并不知道问题到底出在哪里.此时就 ...