Description

刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.
 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案.
 好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的简单(无重边无自环)无向连通图数目.
 由于这个数字可能非常大, 你只需要输出方案数mod 1004535809(479 * 2 ^ 21 + 1)即可.

Input

仅一行一个整数n(<=130000)

Output

仅一行一个整数, 为方案数 mod 1004535809.

Sample Input

3

Sample Output

4

HINT

对于 100%的数据, n <= 130000

 
O(N^2)的做法:
设f[i]表示n个点的无向连通图数目,考虑容斥原理计算n个点的无向非连通图数目。
枚举包含第1个点的连通分量大小j,不难得出f[i]=2C(i,2)-∑f[j]*C(i-1,j-1)*2C(i-j,2)
 
然后把转移方程拆开:f[i]=2C(i,2)-(i-1)!*∑(f[j]*(j-1)!)*((i-j)!*2C(i-j,2))
设A[i]=f[j]*(j-1)!,B[i]=(i-j)!*2C(i-j,2),那么式子就是A与B的卷积了。
然后我们就可以分治+NTT辣!
具体细节可见code:
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=132000;
const int G=3;
const int p=1004535809;
typedef long long ll;
ll pow(ll n,ll m,ll mod=p) {
ll ans=1;
for(;m;m>>=1,(n*=n)%=mod) if(m&1) (ans*=n)%=p;
return ans;
}
ll wn[20];
void NTT(ll* A,int len,int tp) {
int j=len>>1,c=0;
rep(i,1,len-2) {
if(i<j) swap(A[i],A[j]);int k=len>>1;
while(j>=k) j-=k,k>>=1;j+=k;
}
for(int i=2;i<=len;i<<=1) {
c++;
for(int j=0;j<len;j+=i) {
ll w=1;
for(int k=j;k<j+(i>>1);k++) {
ll u=A[k],t=w*A[k+(i>>1)]%p;
A[k]=(u+t)%p;A[k+(i>>1)]=(u-t+p)%p;
w=(w*wn[c])%p;
}
}
}
if(tp<0) {
ll inv=pow(len,p-2);
rep(i,1,len/2-1) swap(A[i],A[len-i]);
rep(i,0,len-1) A[i]=(A[i]*inv)%p;
}
}
ll xp[maxn],inv[maxn];
ll f[maxn],T[maxn],A[maxn],B[maxn];
void solve(int l,int r) {
if(l==r) return;
int mid=l+r>>1,len=1;solve(l,mid);
while(len<=(max(mid-l+1,r-mid)<<1)) len<<=1;
rep(i,0,len-1) A[i]=B[i]=0;
rep(i,l,mid) A[i-l]=f[i]*inv[i-1]%p;
rep(i,1,r-l) B[i]=inv[i]*T[i]%p;
NTT(A,len,1);NTT(B,len,1);
rep(i,0,len-1) A[i]=(A[i]*B[i])%p;
NTT(A,len,-1);
rep(i,mid+1,r) f[i]=((f[i]-xp[i-1]*A[i-l])%p+p)%p;
solve(mid+1,r);
}
int main() {
xp[0]=inv[0]=1;int n=read();
rep(i,1,19) wn[i]=pow(G,(p-1)/(1<<i));
rep(i,1,n) xp[i]=(xp[i-1]*i)%p,inv[i]=pow(xp[i],p-2),f[i]=T[i]=pow(2,(ll)i*(i-1)/2);
solve(1,n);printf("%lld\n",f[n]);
return 0;
}

(UPD)从Po姐那里学来了O(NlogN)的多项式逆元做法。

本题题解:http://blog.csdn.net/popoqqq/article/details/46049331

多项式逆元:http://picks.logdown.com/posts/189620-the-inverse-element-of-polynomial%20%E8%B7%AApicks%E5%A4%A7%E6%AF%92%E7%98%A4

#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int p=1004535809;
const int G=3;
const int maxn=270000;
ll wn[20];
ll pow(ll n,ll m,ll mod=p) {
ll ans=1;
for(;m;m>>=1,(n*=n)%=mod) if(m&1) (ans*=n)%=mod;
return ans;
}
void NTT(ll* A,int len,int tp) {
int j=len>>1,c=0;
rep(i,1,len-2) {
if(i<j) swap(A[i],A[j]);int k=len>>1;
while(j>=k) j-=k,k>>=1;j+=k;
}
for(int i=2;i<=len;i<<=1) {
c++;
for(int j=0;j<len;j+=i) {
ll w=1;
for(int k=j;k<j+(i>>1);k++) {
ll u=A[k],v=w*A[k+(i>>1)]%p;
A[k]=(u+v)%p;A[k+(i>>1)]=(u-v+p)%p;
w=(w*wn[c])%p;
}
}
}
if(tp<0) {
ll inv=pow(len,p-2);
rep(i,1,len/2-1) swap(A[i],A[len-i]);
rep(i,0,len-1) (A[i]*=inv)%=p;
}
}
ll tmp[maxn];
void getinv(ll* A,ll* B,int n) {
if(n==1) {B[0]=pow(A[0],p-2);return;}
getinv(A,B,n>>1);
rep(i,0,n-1) tmp[i]=A[i],tmp[i+n]=0;
NTT(B,n<<1,1);NTT(tmp,n<<1,1);
rep(i,0,(n<<1)-1) tmp[i]=(2-tmp[i]*B[i]%p+p)%p;
rep(i,0,(n<<1)-1) (B[i]*=tmp[i])%=p;
NTT(B,n<<1,-1);
rep(i,n,(n<<1)-1) B[i]=0;
}
ll A[maxn],B[maxn],C[maxn],B2[maxn];
ll xp[maxn],invxp[maxn],xp2[maxn];
int main() {
rep(i,0,19) wn[i]=pow(G,(p-1)/(1<<i));
int n=read(),len=1;while(len<=(n<<1))len<<=1;
xp[0]=invxp[0]=xp2[0]=1;
rep(i,1,n) xp2[i]=pow(2,(ll)i*(i-1)/2),xp[i]=(xp[i-1]*i)%p,invxp[i]=pow(xp[i],p-2);
rep(i,0,n) B[i]=xp2[i]*invxp[i]%p;
rep(i,1,n) C[i]=xp2[i]*invxp[i-1]%p;
getinv(B,B2,len>>1);
NTT(B2,len,1);NTT(C,len,1);
rep(i,0,len-1) A[i]=(B2[i]*C[i])%p;
NTT(A,len,-1);
printf("%lld\n",A[n]*xp[n-1]%p);
return 0;
}

  

BZOJ3456: 城市规划的更多相关文章

  1. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  2. BZOJ3456 城市规划 【多项式求ln】

    题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...

  3. BZOJ3456 城市规划(多项式求逆)

    设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...

  4. BZOJ3456 城市规划 【多项式求逆】

    题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...

  5. BZOJ3456 城市规划 【分治NTT】

    题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直 ...

  6. BZOJ3456城市规划

    题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通.为了 ...

  7. BZOJ3456 城市规划 【生成函数】【FFT】

    题目分析: 容易想到生成函数的构造方法. 令g(n)表示n个点的无向图个数,f(n)表示n个点的无向连通图的个数.式子是显然的. 容易发现式子是卷积的形式,写出生成函数,然后多项式求逆后多项式乘法即可 ...

  8. 2019.01.03 bzoj3456: 城市规划(生成函数+多项式取对)

    传送门 生成函数好题. 题意:求n个点的简单(无重边无自环)无向连通图数目 思路: 对简单无向图构造生成函数f(x)=∑n2Cn2xnn!f(x)=\sum_n2^{C_n^2}\frac{x^n}{ ...

  9. bzoj3456 城市规划 多项式求In

    \(n\)个点的无向联通图的个数 打着好累啊 一定要封装一个板子 记\(C(x)\)为无向图个数的指数型生成函数,\(C(0) = 1\) 记\(G(x)\)为无向联通图个数的指数型生成函数,\(G( ...

随机推荐

  1. SSH入门简单搭建例子

    因为公司涉及项目使用SSH,为了解SSH搭建方式和运作原理,就自己搭建了一个. 采用尽量以最少的JAR包,搭建一个简单的struts2+spring+hibernate环境,希望像我这样的入门者都能理 ...

  2. zzy:请求静态资源和请求动态资源, src再次请求服务器资源

    [总结可以发起请求的阶段:请求动态资源:通过web.xml匹配action然后,自定义Servlet处理该action1)form表单提交请求的时候,用action设定,该页面发起请求的Servlet ...

  3. 借助mosquitto“实时”远程监控服务器数据库运行状态

    公司的项目还处于开发阶段,我把整个后台服务临时放在阿里云上供前端测试,用的阿里云的ECS云服务器,HTTP请求服务器和数据库服务都安装在一台机子上(穷啊,凑合用),做测试用,配置相当低:单核1Gb.其 ...

  4. PRD产品需求文档

    什么是PRD? PRD是Product Requirement Document的英文缩写,即产品需求文档的意思.PRD昰产品流程中的最后一步工作,是将原型中的功能.界面具象化描述,是提交给设计(UI ...

  5. 软引用SoftReference异步加载图片

    HashMap<String, SoftReference<Drawable>> imageCache 关于SoftReference这个类多少知道些机制,会用就ok了. 机制 ...

  6. javascript概述

    在我们进行javascript视频的时候,第一集,看到的学习要点: 1.什么是javascript?         a.一种具有面向对象能力的.解释型的程序设计语言(直接读取运行,而非编译型)   ...

  7. SecureCRT上传和下载文件(下载默认目录)

    SecureCR 下的文件传输协议有ASCII .Xmodem .Ymodem .Zmodem ASCII:这是最快的传输协议,但只能传送文本文件. Xmodem:这种古老的传输协议速度较慢,但由于使 ...

  8. Android 自定义实现switch开关按钮

    前几天在看蘑菇街上有个开关按钮: 就在想是怎样实现的,于是反编译了它的源码,但是这时得到了下面的几张图片: 图片对应的名称: 无色长条:switch_frame; 白色圆点:switch_btn_pr ...

  9. Android:res之shape制作圆角、虚线、渐变

    xml控件配置属性 android:background="@drawable/shape" 标签 corners ----------圆角gradient ----------渐 ...

  10. Liferay 6.2 改造系列之十一:默认关闭CDN动态资源

    在行业客户中,一般无法提供CDN服务,因此默认关闭CDN动态资源功能: 在/portal-master/portal-impl/src/portal.properties文件中,有如下配置: # # ...