Description

给定$p_1,p_2,…,p_n,b_1,b_2,...,b_m$,

求满足$x\;mod\;p_1\;\equiv\;a_1,x\;mod\;p_2\;\equiv\;a_2,...,x\;mod\;p_n\;\equiv\;a_n$的$x$对$b_1,b_2,...,b_m$取模的结果.

Input

第一行两个整数$n,m$.

接下来$n$行,每行有一个整数$a_i$.

接下来$m$行,每行有一个整数$b_i$.

Output

$m$行,每行一个整数,表示$x\;\mod\;b_i$的结果.

Sample Input

4 3

1

2

3

2

11

23

100

Sample Output

1

0

23

HINT

$m=100,0<b_i<10^9,b_i$为随机生成的,$p_i$为第$i$小的质数.

Solution

中国剩余定理+高精度???

这题只需记录$mod\;b_i$结果.

$ans.b[i]$表示$mod\;b_i$的结果,$mul.p[i]$表示目前$p_i$寻找答案中每次加上的数,$ans.p[i],mul.b[i]$同理.

对于$i\;\in\;[1,n]$,每次暴力$+mul.p[i]$直到$ans.p[i]=a_i$,然后将每个$mul.p[\;]\;\;\times\;p[i]$(保证后面无论怎么操作,$ans.p[i]\;\equiv\;a_i(mod\;p_i)$.

($ans.b[\;],mul.b[\;]$同步进行以上$"+","\times"$操作.)

#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 305
#define M 2000
using namespace std;
typedef long long ll;
struct mod{
int p[N];ll b[N];
}ans,mul;
ll b[N];
int a[N],p[N],n,m,cnt;
bool u[M],flag;
inline void prime(){
for(int i=2;cnt<n;++i){
if(!u[i]) p[++cnt]=i;
for(int j=1;j<=cnt&&p[j]*i<M;++j){
u[p[j]*i]=true;
if(!(i%p[j])) break;
}
}
}
inline void init(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
if(a[i]) flag=true;
}
for(int i=1;i<=m;++i)
scanf("%lld",&b[i]);
prime();
if(!flag){
for(int i=1;i<=m;++i){
ans.b[i]=1LL%b[i];
for(int j=1;j<=n;++j)
ans.b[i]=ans.b[i]*(ll)(p[j])%b[i];
}
for(int i=1;i<=m;++i)
printf("%lld\n",ans.b[i]);
return;
}
for(int i=1;i<=n;++i)
mul.p[i]=1%p[i];
for(int i=1;i<=m;++i)
mul.b[i]=1LL%b[i];
for(int i=1;i<=n;++i){
while(ans.p[i]!=a[i]){
for(int j=1;j<=n;++j)
ans.p[j]=(ans.p[j]+mul.p[j])%p[j];
for(int j=1;j<=m;++j)
ans.b[j]=(ans.b[j]+mul.b[j])%b[j];
}
for(int j=1;j<=n;++j)
mul.p[j]=mul.p[j]*p[i]%p[j];
for(int j=1;j<=m;++j)
mul.b[j]=mul.b[j]*(ll)(p[i])%b[j];
}
for(int i=1;i<=m;++i)
printf("%lld\n",ans.b[i]);
}
int main(){
freopen("mod.in","r",stdin);
freopen("mod.out","w",stdout);
init();
fclose(stdin);
fclose(stdout);
return 0;
}

[日常训练]mod的更多相关文章

  1. 「日常训练」ZgukistringZ(Codeforces Round #307 Div. 2 B)

    题意与分析(CodeForces 551B) 这他妈哪里是日常训练,这是日常弟中弟. 题意是这样的,给出一个字符串A,再给出两个字符串B,C,求A中任意量字符交换后(不限制次数)能够得到的使B,C作为 ...

  2. [日常训练]yayamao的神题

    Description $yayamao$是数学神犇,一天他在纸上计算起了$1/P$, 我们知道按照模拟除法可以得到准确解,例如$1/7=0.(142857),1/10=0.1(0)$.$yayama ...

  3. [日常训练]常州集训day8

    T1 Description 给定一个长度为$n$的正整数序列$a$.可以将序列分成若干段,定义第$i$段的权值$x_i$为这一段中所有数的最大值,特殊地,$x_0=0$.求$\sum_{i=1}^{ ...

  4. [日常训练]常州集训day5

    T1 Description 小$W$和小$M$一起玩拼图游戏啦~ 小$M$给小$M$一张$N$个点的图,有$M$条可选无向边,每条边有一个甜蜜值,小$W$要选$K$条边,使得任意两点间最多有一条路径 ...

  5. [日常训练]常州集训day3

    T1 Description 有$K$个石子,石子只能放在$N$条水平线与$M$条竖直线构成的网格的交点上. 求用$K$个石子最多能找到多少四边平行于坐标轴的长方形,它的四个角上都恰好放着一枚石子. ...

  6. 【日常训练】Help Far Away Kingdom(Codeforces 99A)

    题意与分析 题意很简单,但是注意到小数可能有一千位,作为一周java选手的我选择了java解决. 这里的分析会归纳一些必要的Java API:(待补) 代码 /* * ACM Code => c ...

  7. 「日常训练」 Fire!(UVA-11624)

    与其说是训练不如说是重温.重新写了Java版本的代码. import java.util.*; import java.math.*; import java.io.BufferedInputStre ...

  8. 「日常训练」COMMON 约数研究(HYSBZ-1968)

    题意与分析 感谢https://www.cnblogs.com/Leohh/p/7512960.html的题解.这题话说原来不在我的训练范围,正好有个同学问我,我就拿来做做.数学果然不是我擅长的啊,这 ...

  9. 2017-2018 ACM-ICPC Northern Eurasia (Northeastern European Regional) Contest (NEERC 17) 日常训练

    A - Archery Tournament 题目大意:按时间顺序出现靶子和射击一个位置,靶子的圆心为(x, y)半径为r,即圆与x轴相切,靶子不会重叠,靶子被击中后消失, 每次射击找出哪个靶子被射中 ...

随机推荐

  1. ie6-ie8中不支持opacity透明度的解决方法

    ie6-ie8中是不支持的,需要加上下面这句话:filter: alpha(opacity=70);此外这种效果不能用ietester中的ie6测试,因为ietester的ie6这样写也是不透明的,但 ...

  2. jmeter(二)录制脚本

    对大多数刚开始接触性能测试的人来说,代码功力可能不是太好,我们可以通过工具,录制脚本来进行测试,以达到我们的目的 一般来讲,录制脚本有两种方法 一.利用badboy进行脚本录制 1.下载安装 badb ...

  3. linux下截取给定路径中的目录部分

    在日常运维中,有时会要求截取一个路径中的目录部分.截取目录的方法,有以下两种:1)dirname命令(最常用的方法):用于取给定路径的目录部分.很少直接在shell命令行中使用,一般把它用在shell ...

  4. Kali linux渗透测试常用工具汇总1

    1.ProxyChains 简介:代理工具.支持HTTP/SOCKS4/SOCK5的代理服务器,允许TCP/DNS通过代理隧道. 应用场景:通过代理服务器上网. 配置:/etc/proxychains ...

  5. BZOJ 1834 【ZJOI2010】 network 网络扩容

    Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的 ...

  6. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  7. QT 文件操作

    QT提供了QFile类用于文件读写 QFile可以读写文本文件,也可以读写二进制文件 #include "widget.h" #include <QGridLayout> ...

  8. postgresql 函数返回结果集(zz)

    pgsql function 系列之一:返回结果集--------------------------------------------------------------------------- ...

  9. 【分布式协调器】Paxos的工程实现-cocklebur简介(二)

    Cocklebur集群的工作原理 在集群正常工作时,整个集群只会有一个Leader,其他都是Follower.Client可以注册到某个Follower,当然也可以注册到Leader,为了减轻Lead ...

  10. 30行代码实现Javascript中的MVC

    从09年左右开始,MVC逐渐在前端领域大放异彩,并终于在刚刚过去的2015年随着React Native的推出而迎来大爆发:AngularJS.EmberJS.Backbone.ReactJS.Rio ...