[日常训练]mod
Description
给定$p_1,p_2,…,p_n,b_1,b_2,...,b_m$,
求满足$x\;mod\;p_1\;\equiv\;a_1,x\;mod\;p_2\;\equiv\;a_2,...,x\;mod\;p_n\;\equiv\;a_n$的$x$对$b_1,b_2,...,b_m$取模的结果.
Input
第一行两个整数$n,m$.
接下来$n$行,每行有一个整数$a_i$.
接下来$m$行,每行有一个整数$b_i$.
Output
$m$行,每行一个整数,表示$x\;\mod\;b_i$的结果.
Sample Input
4 3
1
2
3
2
11
23
100
Sample Output
1
0
23
HINT
$m=100,0<b_i<10^9,b_i$为随机生成的,$p_i$为第$i$小的质数.
Solution
中国剩余定理+高精度???
这题只需记录$mod\;b_i$结果.
$ans.b[i]$表示$mod\;b_i$的结果,$mul.p[i]$表示目前$p_i$寻找答案中每次加上的数,$ans.p[i],mul.b[i]$同理.
对于$i\;\in\;[1,n]$,每次暴力$+mul.p[i]$直到$ans.p[i]=a_i$,然后将每个$mul.p[\;]\;\;\times\;p[i]$(保证后面无论怎么操作,$ans.p[i]\;\equiv\;a_i(mod\;p_i)$.
($ans.b[\;],mul.b[\;]$同步进行以上$"+","\times"$操作.)
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 305
#define M 2000
using namespace std;
typedef long long ll;
struct mod{
int p[N];ll b[N];
}ans,mul;
ll b[N];
int a[N],p[N],n,m,cnt;
bool u[M],flag;
inline void prime(){
for(int i=2;cnt<n;++i){
if(!u[i]) p[++cnt]=i;
for(int j=1;j<=cnt&&p[j]*i<M;++j){
u[p[j]*i]=true;
if(!(i%p[j])) break;
}
}
}
inline void init(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
if(a[i]) flag=true;
}
for(int i=1;i<=m;++i)
scanf("%lld",&b[i]);
prime();
if(!flag){
for(int i=1;i<=m;++i){
ans.b[i]=1LL%b[i];
for(int j=1;j<=n;++j)
ans.b[i]=ans.b[i]*(ll)(p[j])%b[i];
}
for(int i=1;i<=m;++i)
printf("%lld\n",ans.b[i]);
return;
}
for(int i=1;i<=n;++i)
mul.p[i]=1%p[i];
for(int i=1;i<=m;++i)
mul.b[i]=1LL%b[i];
for(int i=1;i<=n;++i){
while(ans.p[i]!=a[i]){
for(int j=1;j<=n;++j)
ans.p[j]=(ans.p[j]+mul.p[j])%p[j];
for(int j=1;j<=m;++j)
ans.b[j]=(ans.b[j]+mul.b[j])%b[j];
}
for(int j=1;j<=n;++j)
mul.p[j]=mul.p[j]*p[i]%p[j];
for(int j=1;j<=m;++j)
mul.b[j]=mul.b[j]*(ll)(p[i])%b[j];
}
for(int i=1;i<=m;++i)
printf("%lld\n",ans.b[i]);
}
int main(){
freopen("mod.in","r",stdin);
freopen("mod.out","w",stdout);
init();
fclose(stdin);
fclose(stdout);
return 0;
}
[日常训练]mod的更多相关文章
- 「日常训练」ZgukistringZ(Codeforces Round #307 Div. 2 B)
题意与分析(CodeForces 551B) 这他妈哪里是日常训练,这是日常弟中弟. 题意是这样的,给出一个字符串A,再给出两个字符串B,C,求A中任意量字符交换后(不限制次数)能够得到的使B,C作为 ...
- [日常训练]yayamao的神题
Description $yayamao$是数学神犇,一天他在纸上计算起了$1/P$, 我们知道按照模拟除法可以得到准确解,例如$1/7=0.(142857),1/10=0.1(0)$.$yayama ...
- [日常训练]常州集训day8
T1 Description 给定一个长度为$n$的正整数序列$a$.可以将序列分成若干段,定义第$i$段的权值$x_i$为这一段中所有数的最大值,特殊地,$x_0=0$.求$\sum_{i=1}^{ ...
- [日常训练]常州集训day5
T1 Description 小$W$和小$M$一起玩拼图游戏啦~ 小$M$给小$M$一张$N$个点的图,有$M$条可选无向边,每条边有一个甜蜜值,小$W$要选$K$条边,使得任意两点间最多有一条路径 ...
- [日常训练]常州集训day3
T1 Description 有$K$个石子,石子只能放在$N$条水平线与$M$条竖直线构成的网格的交点上. 求用$K$个石子最多能找到多少四边平行于坐标轴的长方形,它的四个角上都恰好放着一枚石子. ...
- 【日常训练】Help Far Away Kingdom(Codeforces 99A)
题意与分析 题意很简单,但是注意到小数可能有一千位,作为一周java选手的我选择了java解决. 这里的分析会归纳一些必要的Java API:(待补) 代码 /* * ACM Code => c ...
- 「日常训练」 Fire!(UVA-11624)
与其说是训练不如说是重温.重新写了Java版本的代码. import java.util.*; import java.math.*; import java.io.BufferedInputStre ...
- 「日常训练」COMMON 约数研究(HYSBZ-1968)
题意与分析 感谢https://www.cnblogs.com/Leohh/p/7512960.html的题解.这题话说原来不在我的训练范围,正好有个同学问我,我就拿来做做.数学果然不是我擅长的啊,这 ...
- 2017-2018 ACM-ICPC Northern Eurasia (Northeastern European Regional) Contest (NEERC 17) 日常训练
A - Archery Tournament 题目大意:按时间顺序出现靶子和射击一个位置,靶子的圆心为(x, y)半径为r,即圆与x轴相切,靶子不会重叠,靶子被击中后消失, 每次射击找出哪个靶子被射中 ...
随机推荐
- 使用NIFTI指令画nii图像
❤ 关于几种显示工具 mricro:显示出来的左右脑是反着的: mricroN,SPM,xjview,BrainNetViewer:显示出的左右脑是正确的,并且对于做过仿射变换的图像可以自动识别并且校 ...
- IE 和Firefox的js兼容性总结
IE 和Firefox的js兼容性总结 12 August 2010 11:39 Thursday by 小屋 标签: 浏览器 方法 属性 IT 写法 一.函数和方法差异 1 . getYear()方 ...
- BZOJ 1834 【ZJOI2010】 network 网络扩容
Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的 ...
- Silverlight调用本机exe程序
要点: 1. Silverlight必须启用OOB模式,以及 Require elevated trust when running in-browser.参考下图设置 注:OOB模式,并不意味着必须 ...
- 利用Spring MVC搭建REST Service
之前写过一篇 利用JAX-RS快速开发RESTful 服务 今天来看下spring-mvc框架如何实现类似的功能: 一.pom.xml <?xml version="1.0" ...
- eclipse: workspace出错导致无法启用的解决
通常我们会在eclipse中创建多个workspace,比如一个用于学习,一个用于工作... ,因为种种原因,时不时会发现eclipse切换workspace后启动失败,提示让你去看workspace ...
- 【监控】WebServer入库与缓存更新代码优化小计
问题描述: 通过WebServer将监控数据入库到Hbase,在入库之前需要将指标与ip的列表更新到缓存中,以便前台页面随时选择查看.前两天上了一些新用户导致负载增加,逐渐发现某些用户的监控场景出现丢 ...
- ASP.NET + SqlSever 大数据解决方案 PK HADOOP
半个月前看到博客园有人说.NET不行那篇文章,我只想说你们有时间去抱怨不如多写些实在的东西. 1.SQLSERVER优点和缺点? 优点:支持索引.事务.安全性以及容错性高 缺点:数据量达到100万以 ...
- 226 Invert Binary Tree
/** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = ...
- JavaScript函数劫持
一.为什么我会写这篇文章 这篇文章其实是在一个偶然的机会下发现了居然有JavaScript劫持这种东西,虽然这种东西在平时用的比较少,而且一般实用价值不高,但是在一些特殊的情况下还是要使用到的,所以在 ...