完全偶图K(3,3)与完全图K5是否存在平面表示
本文论述k(3, 3)与K5平面表示的存在性。首先给出图的平面表示的定义:
若可以在平面里画出一个图而让边没有任何交叉(边的交叉是指边的直线或弧线在它们的公共端点以外的地方相交),则这个图是平面性的。这样一种画法称为这个图的平面表示。
显然,证明一个图是非平面性比证明一个图是平面性的要困难。因为对于后者我们可以用构造性的存在性证明来说明一个图是平面性的。
首先考虑K(3, 3)是否是平面性的。为了解决这个问题,我们首先可能认为其存在平面表示,于是乎我们开始尝试各种可能,企图利用构造性的存在性证明来找到一个合法的解。不幸的是在尝试了许多可能后,我们仍然没有找到一个合法解。自然的,我们在心里开始否认先前的看法,转而认为其不可能有平面表示。但是,这只是一种合情的猜想,站在G·波利亚的角度我们可能会说,数学的发现离不开猜想,然而猜想也仅仅是猜想而已,未经证明的猜想是不可靠的,对于猜想的态度应该是要么证明它,要么推翻它,对于既不能推翻也不能证明的猜想就有可能成为世界性难题,比如著名的哥德巴赫猜想和经由计算机证明的四色定理。扯远了,思想性的东西还是直接看波利亚的书吧。回到我们的主题,下面我们将证明K(3, 3) 是非平面性的。
考虑两个集合,每个集合有三个元素(顶点),在两个集合中各取出两个元素,作出在完全偶图概念下的平面表示。这显然是容易做到的,它很明显是一个四边形,且属于同一个集合的顶点在四边形的对角线上(这里广义化了,因为四边形可能是不规则的)。考虑到还有两个元素没有添加进来,我们不失一般性的任取其中之一,其摆放位置很明显有两种,要么在四边形区域内要么在四边形区域外,如果在区域内,将其和另一个集合的两个顶点相连,这样把平面划分成了三个区域,注意到剩下的那个顶点在这种情况下放到哪个区域中都不可能不发生交叉。在区域外的情况同理。至此我们证明了K(3, 3)是非平面性的。
利用相似的思想,我们可以证明完全图K5 也是非平面性的(hits: 可以先放置四个顶点,它的形式必然如下图,考虑第五个顶点,它无论放到哪里都不可能不产生交叉;或者我们可以先放置三个顶点,它构成了一个三角形,然后考虑另外两个顶点的放置方法)。
完全偶图K(3,3)与完全图K5是否存在平面表示的更多相关文章
- Codeforces 1290D - Coffee Varieties(分块暴力+完全图的链覆盖)
Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 发现自己交互题烂得跟 s ...
- leetcode-973最接近原点的K个点
leetcode-973最接近原点的K个点 题意 我们有一个由平面上的点组成的列表 points.需要从中找出 K 个距离原点 (0, 0) 最近的点. (这里,平面上两点之间的距离是欧几里德距离.) ...
- [网络流24题]最长k可重线段集[题解]
最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...
- 离散数学A
自反性:(都自指)所有的点自己指向自己[<a,a><b,b>]:反自反性:(都不自指)所有的点都绝不自己指向自己:对称性:但凡指,定互指[<a,b>,<b,a ...
- Ramsey's_theorem Friendship Theorem 友谊定理
w https://en.wikipedia.org/wiki/Ramsey's_theorem https://zh.wikipedia.org/wiki/拉姆齐定理 在组合数学上,拉姆齐(Rams ...
- 《Pro AngularJS》学习小结-01
<Pro AngularJS>该书以一个SportsStore案例为主线铺开. 一.开发环境设置 该书中所用的数据库data server开发环境是Deployed,从来没听说过,而且作者 ...
- String的常规使用集合
今天先附上代码君: package com.jacob.javase; import java.io.UnsupportedEncodingException; /* *探讨String: * * ...
- Codeforce 215 div1
C 把每个qi看成点,则问题转化为:求一个最大的k,遍历k个点的完全图需要的最小步数+1不超过n, (这里+1的原因是把起点加进去) 讨论k的奇偶: k为奇数,每个点度数为偶数,这是一个欧拉回路,步数 ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
随机推荐
- Vijos1425子串清除 题解
Vijos1425子串清除 题解 描述: 我们定义字符串A是字符串B的子串当且仅当我们能在B串中找到A串.现在给你一个字符串A,和另外一个字符串B,要你每次从B串中从左至右找第一个A串,并从B串中 ...
- BZOJ4513: [Sdoi2016]储能表
Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 j 列的格子储存着 (i xor j) 点能量. ...
- U-Boot编译过程解析
解压u-boot-2010.03.tar.bz2就可以得到全部U-Boot源程序.在顶层目录下有29个子目录,分别存放和管理不同的源程序.这些目录中所要存放的文件有其规则,可以分为3类. ● 与处理器 ...
- Linux软件安装为什么名字不一样
一.说安装 1.安装 yacc :# yum install byacc 2.安装 glib: :# yum install glibc 3.安装 wireshark :# yum install w ...
- C#读取数据库字节流生成图片
前台用DataList绑定 <asp:DataList ID="DataList1" runat="server"> <ItemTemplat ...
- gcc 编译器参数
一.GCC编译过程 参考:http://hi.baidu.com/zengzhaonong/item/c00e079f500adccab625314f------------------------- ...
- JAVA 线程同步异步简单实例
package test; public class testThread { public static void main(String[] args) { Example example = n ...
- PL/SQL 导出dmp文件时发现表少了
(1)查看日志,是否有如下提示信息: EXP-: no storage definition found , ) 解决方法: http://www.it165.net/database/html/20 ...
- java四种内部类详解
一般来说,有4中内部类:常规内部类.静态内部类.局部内部类.匿名内部类. 一.常规内部类:常规内部类没有用static修饰且定义在在外部类类体中. 1.常规内部类中的方法可以直接使用外部类的实例变 ...
- 关于格式转换 “%a.bs”
这个形式的格式转换符用于输出, 如果a <= b, 那么输出的字符串串长大于等于a, 小于b; 否则, 输出的串长按照a指定的输出. (不够,用空格补齐)